INTERDATA

FORTRAN V LEVEL II COMPILER

PROJECT NO. 03561

FUNCTIONAL SPECIFICATION

J. BURDA
J. McGOVNEY

January 13, 1975

COPYRIGHT (@ INTERDATA, INC., 1975

NOTE
All information contained in this document is subject
to change without notice.

PROGRAM NAME: FORTRAN V LEVEL II COMPILER
PART NUMBER:
GENERAL DESCRIPTION:

The FORTRAN V LEVEL II compiler is the FORTRAN software package
that is intended to provide Interdata users with FORTRAN capa-
bility for years to come. At the time of this writing it is
intended to provide them with the American National Standards
Institute's latest preliminary FORTRAN standard (X3J3/56) and
also to be nearly upwards compatible with Interdata FORTRAN V
LEVEL TI.

SUMMARY OF FEATURES

The FORTRAN V LEVEL II compiler is a two phase compiler with an
optional intermediate third phase to do language dependent, ma-
chine independent optimizations.

The FORTRAN V LEVEL II compiler will provide compile-time
options for conditional compilation, inclusion of source from
a_named file, edltorlal control of llstlngs, intermix of CAL
and FORTRAN, and run-time and flow tracing.

FORTRAN 5 Level II embodies several significant language ex-
tensions which include:

Address mode variables and constants
Hexadecimal constants

Mixéd Mode arithmetic

ENCODE/DECODE statements

Character string variables and constants with
: substrlng and concatenatlon operators

The FORTRAN V Level II compiler will be a three phase compiler.
Phase 1 will be the lexical syntactic analyzer producing a
symbol table, a label table, an intermediate language matrix,
anda DO=table ‘stack.” "Phase’ 2 is an optlonal phase which will
do™ language dependent, machine independent optimizations.
Common‘subexpre551on analys1s, ‘¢onstant computations, and
Iocdlly ¢onstant expressions out of DO-loops will be handled

- by this phase. The third phase will be the code generation

phase. It will perform machine dependent optimizations,
reglster allocation and spec1al machlne checks for optimiza-
tlon plrposes.

5. DETAILED DESCRIPTION

5.1.1 This functional specification establishes:

(1) The form of a program written in the FORTRAN V
Level II language.

(2) The form of writing input data to be processed
by such a program operating on INTERDATA computers.

(3) Rules for interpreting the meaning of such a
program.

(4) The form of the output data resulting from the
use of such a program on INTERDATA computer systems.

5.1.2 Notation Used in This Functional Specification.

In describing the form of FORTRAN statements or con-
structs, the following conventions and symbols are
used:

(1) Special characters from the FORTRAN character
set, upper case letters, and upper case words are to
be written exactly as shown, except where otherwise
noted.

(2) Lower case letters or words indicate general en-
tities for which specific entities must be substituted
in actual statements.

(3) Brackets, - - are used to indicate an optional
item, or to group optional items.

(4) An ellipsis,..., indicates that the preceding op-
tional item(s) may be repeated more than once in suc-
cession. Ellipses are also used to indicate missing
items where the context is obvious, for example, digits
are 0,1,2,...,9.

(5) Blanks are used to improve readability, but unless
otherwise noted have no significance.

An example illustrates the above. Given a description
of the form of a statement as:

CALL sub{(a ,a ...)]
then the following forms are allowed:
CALL sub

CALL sub (a)
CALL sub (a,a)

-1~

CALL sub (a,a,a)
etc.

When writing an actual statement, spec1flc entities
‘are substituted for sub and each a: for example,
CALL ABCD(X,1.0) -

FORTRAN CONCEPTS

This section introduces some basic terminology and some basic
concepts. A rigorous treatment of some of these terms and
concepts is given in later sections. Certain conventions con-
cerning the meaning of grammatical forms and particular words
are presented. The words underlined are defined here and
used throughout this functional specification.

5.2.1 Programs

An executable program consists of one main program, any num-
ber of subprograms, and any number of other external procedures.
It usually is a self-contained computing procedure.

.*.m‘ o N g . . '

5.2.1.1 Main Program - A main program is a set of FORTRAN

" statements, optional comment lines, and an END line. It must

not contain any FUNCTION SUBROUTINE, or BLOCK DATA statements.
It can optionally be headed by a PROGRAM statement.

'5.2.1.2° Subprogram - A subprogram is a set of FORTRAN state-

ments, optional comment lines, and an END line that is headed
by a FUNCTION, SUBROUTINE, or BLOCK DATA statement.

5.2.1.3 Program Unit - A program unit is either a main pro-
gram oOr a subprogram.

5.2.2 Statements, Comments and Lines

A program unit consists of statements, optional comment lines
and an END line.

5.2.2b

A statement is written in lines, the first of which is called
an initial line and succeeding lines, if any, are called con-
tinuation lines. There may be a maximum of 19 continuation
lines following an initial 1line.

5.2.2c

There is a type of line called a comment line that is not a
statement and merely provides information for documentary
purposes. It starts with a C in Column 1.

-2-

5.2.24

There is a type of line called a system option line. This
line begins with a $ in column 1 followed by the system op-
tion.

5.2.2e

Conditionally compiled statements are those which begin with

an X in column 1 of an initial line. Such statements are ig-
nored by the compiler until such time as a system option card
controlllng conditional compilation is encountered.

5.2.2f

The END line indicates the physical end of a program unit.

5.2.2.1 Classes of Statements - The statements in FORTRAN
fall into two classes, executable and nonexecutable. The
executable statements specify the action of the program and
the nonexecutable statements describe the characteristics and
arrangement of data, editing information, statement functions,
the kind of subprograms, and entry points within subprograms.

5.2.3 Namés and Options

Thy syntactic parts of a statement are names, constants, op-
erators, and special characters. Names are used to reference
data and procedures. Operators, including the imperative verbs,
usually specify action upon named data.

5.2.3.1 Symbolic Names - A symbolic name consists of from one
to six alphanumeric characters, the first of which must be
a letter.

5.2.3.2 Array Names - An array name is a symbolic name that
refers to a set of data. The number of individual data ele-
ments in the set is specified in an array declarator. The
£TTay name may sometimes be used to refer to the entire set.
The array name may be qualified with a subscript to refer to
a partlcular element of the array. The indivicual elements
6f ah array are called array elements.

5.2.3.3 Variable Names - A variable name is a symbolic name
that refers to a datum which is neither an array element nor
a constant.

5.2.3.4 Expressions - The simplest expression is a constant,
a variable name, an array name, or a function reference. More
complicated expressions containing one or more of the above
entities may be formed by using operators that express the
computation to be performed.

-3-

CHARACTERS, LINES, AND EXECUTION SEQUENCE

5.3.1 FORTRAN Character Set

The FORTRAN character set consists of twenty-six letters, ten
digits, and fifteen special characters.

5.3.1.1 A letter is one of the twenty-six characters:

A B CDEFGHIJKLMNOPQRSTUVWIXYZ

5.3.1.2 A digit is one of the ten characters:
012345867829

A string of digits is interpreted in the decimal base number
system when a number system base interpretation is appropri-
ate. The hexadecimal base number system is written as
X'hy,...hg' or Y'hj,...,hg' where the h; are digits.

5.3.1.3 Special Characters - A special character is one of
the sixteen characters.

Character Name of Character

Blank

Equals

Plus

Minus

Asterisk

Slash

Left Parenthesis
Right Parenthesis
Comma

Decimal Point
Apostrophe

Colon

S N

< Less Than

> Greater Than
H Semicolon

@ At Sign

5.3.1.4 Blank Character - With the exception of the uses in
Hollerith and character strings, a blank character within a
program unit has no meaning and may be used to improve the
appearance of the program, subject to the restriction on the
number of consecutive continuation lines.

5.3.2 Lines

A line in a program unit is a string of 72 characters. All
characters must be from the FORTRAN character set except in

[y .

comments, Hollerith strings, or character strings.

5.3.2b

The character positions in a line are called columns and are
consecutively numbered 1,2,3,...,72. The number indicates the
sequential position of a character in the line starting at

the left and proceeding to the right. Lines are ordered by
the sequence in which they are presented to the processor.
Thus a program unit consists of a totally ordered set of char-
acters. :

5.3.2.1 Comments - The letter C in column 1 of a line desig-
nates that line as a comment line. A semicolon after any
FORTRAN statement designates the remainder of that line as

a comment. Any character capable of being represented in the
processor may appear in a comment. A comment does not affect
the executable program in any way and is available as a con-
venience for the user.

5.3.2.1b

A comment line must be immediately followed by an initial
line, another comment line, or an END line. A comment line
may not be followed by a continuation line. Comment lines
may precede the initial line of the first statement of any
program unit.

5.3.2.2 An END line is any line that has the character

blank in columns 1 through 6 and the characters E, N, and D
once each, and in that order, in columns 7 through 72, pre-
ceded by interspersed with, or followed by the character
blank. The END line contains no other characters in columns
1 through 72 except perhaps a semicolon followed by a comment.
The END line indicates to the processor the end of the writ-
ten description of a program unit. Every program unit must
physically terminate with an END line.

5.3.2.3 Initial Line - An initial line is any line that is
neither a comment line nor an END line and contains the digit
0 or the character blank in column 5. Column 1 may contain
an X for a conditionally compiled line, otherwise columns 1
through 5 or columns 2 through 5 contain a statement label

or the character blank.

5.3.2.4 Continuation Line - A continuation line is any 1line
that is not a comment line and contains any character of the
FORTRAN character set other than the digit 0 or the character
blank in column 6. A continuation line may follow only an
initial line or another continuation line and there must not
be more than nineteen consecutive continuation lines. Columns
1 through 5 of a continuation line may contain any characters
of the FORTRAN character set, except that column 1 must not
contain a C or an X or a §.

-5

5.3.2.5 System Option Lines - System option lines start with
a $ in column 1 followed by the system option command.

5.3.2.5b

Mixing of Assembly Language with FORTRAN - The compiler proces-
ses statements as FORTRAN source code until a $ASSM statement
is encountered. Each source statement read subsequent to $ASSM
is passed directly to the intermediate text without any analy-
sis by the compiler, other than checking for other option
statements. This continues until a $FORT statement is en-
countered.

5.3.2.5¢c.

Conditional Compilation - $COMP, $NCMP are used to control
conditional compilation. Source statements flagged with an '
X in column are not compiled until a $COMP statement is en-
countered. Then they are compiled until either a $NCMP op-
tion a FORTRAN END statement is encountered.

5.3.2.5d

Flow Tracing -and Run-time Value Tracing - Three types of
run-time trace options will be available for use with the
FORTRAN V level II compiler. The first is used in tracing
selected variables, the second. is used in tracing -all vari-
ables within a specified area, and the third is an uncondi-
tional trace of all variables within a program unit. Trace
options statements may not appear in BLOCKDATA subprograms.

A STRCE statement used for item tracing, specifies a list of
variable names and/or array names. The format for this type
of statement is: :

col
1 7
$TRCE Xl,Xz,...,Xn

where: X is any variable or array name. When any variables
or array elements listed in a previously encountered S$TRCE
statement become redefined by an arithmetic statement, coding
is inserted causing a line of trace information to be printed
on LU6 at run time. :

A STRCE statement used for area tracing specifies a single
statement number and has the format:

col
1 7
STRCE n

where: n is any statement number not yet defined at the time
the S$TRCE statement is processed. This type of trace inserts

-6-

coding that causes the results of all arithmetic expressions
that follow the $TRCE statement, up to the statement speci-
fied in the S$TRCE statement, to be printed on LU 6. In addi-
tion to tracing all arithmetic statements within the trace
range, all statement numbers defined within the range also
cause coding to be generated that prints a line of trace in-
formation indciating the statement number encountered. An
area STRCE statement should not be placed within the trace
range of another area S$TRCE statement.

Insertion of a $TRCE statement with no argument list of iden-
tifier names or statements causes coding to be generated to
trace ‘all variables and labelled statements until an END or
SNTRE statement is encountered.

Insertion of a $SNTRE statement unconditionally terminates

all tracing until a subsequent $TRCE statement is encountered.
If no $TRCE options are specified, no trace code is generated;
i.e., the SNTRE option is assumed. :

5.3.2.5e

STITL System Option - This option causes the contents of
columns 7 through 72 of the $TITL statement to be used as a
heading along with the page number on the compiler's list
output. STITL statements may be used anywhere within the
source program. The list output device is ejected to top-
~of-form and a new title is printed each time a S$TITL state-
ment is encountered.

5.3.2.5f

SEJCT System Option - This option causes the compiler to
eject the list output device to top-of-form, print the cur-
rent title and next page number, and continue.

5.3.2.5g

STEST - This option causes code to be generated subsequent
to the computation of array indices to test for index values
that are out of range. The array range check is made only
for arrays which have fixed dimensions; adjustable dimension
arrays in subroutines are not tested.

5.3.3 Statements

The statements of the FORTRAN language are described in later
sections and are used to form program units. Each statement
is written in columns 7 through 72 of an initial line and
possibly as many as nineteen continuation lines. Thus a
statement may not contain more than 1320 characters. Except
as part of a logical IF statement no statement can begin on

-7

a line that contains any part of the previous statement.

5.3.3b

Blank characters within a statement do not change the inter-
pretation except when they appear within the datum strings of
Hollerith constants, character constants or the Hollerith or
character field descriptors in FORMAT statements. However,
blank characters do count as characters in the limit of 1320
characters in any one statement. - A statement of all blank
.characters is not permitted.

5.3.4 Statement Label

Statement labels provide a means of referring to individual
statements. Any statement may be labelled, but only labeled
executable statements and FORMAT statements may be referred
to. A statement label consists of one to five decimal di-
gits. The statement label may be placed anywhere in columns
1 through 5 of the initial line of the statement. The same
statement label may not be given to more than one statement
in a program unit.

5.3.4b

The form of a statement label is the same as that of an un-
signed, nonzero, integer constant; however, a statement label
is not an integer constant. The value of the integer repre-
sented is not significant. Blanks and leading zeros are not
significant in distinguishing between statement labels. NOTE
that there are 99999 unique statement labels.

5.3.5 Order of Statements and Lines

If a PROGRAM statement appears in a main program, it must be
the first statement. The first statement of a subprogram
must be either a FUNCTION, SUBROUTINE, or BLOCKDATA statement.

5.3.5b

Within a program unit: (1) FORMAT statements may appear any-
where and ENTRY statements may appear anywhere except within
ranges of DO-loops; (2) all specification statements must pre-
cede all executable statements, DATA statements, and state-

" ment function definitions; (3) all statement function defini-
tions must precede all executable statements and (4) DATA
statements may appear anywhere after the specification state-
ments.

5.3.5c¢

Within the specification statements of a program unit, IMPLICIT
statements must precede all other specification statements
except PARAMETER statements. A PARAMETER statement must
precede all other statements containing the symbolic names

-8-

of constants that appear in that particular PARAMETER state-
ment. If a variable appears in an adjustable dlmen51on declar-
ator expression or in a character length expression, the type
ot that variable may not be specified in a subsequent type—

statement.
5. 3 5d
Every program unit must have an END line as its last llne.
5.3.5e
Figure 1.
Required Order of Statements and Lines
{
I [PROGRAM, FUNCTION, SUBROUTINE, or l
L BLOCK DATA Statement |
l J ! I
| | ‘ IMPLICIT
J _ Statements |
| rorMaT | DARAMETER l
| comment and Statements Other |
' ' L | I Specification
Lines ENTRY Statements |
| I Statements j
| ‘ '] Statement l
) ' Function '
| ' DATA | Definitions
| Statements l }
| | Executable
Statements !
L ! 1 ' |
l : END Statement _J
5.3.5f

Figure 1 is a pictorial representation of the requ1red order
of statements for a program unit as described in this section.
Vertical lines delineate varieties of statements which may

be interspersed. For example, FORMAT statements may be
interspersed with statement function definitions and
executable statements. Horizontal lines delineate varieties
of statements which may not be interspersed. For example,
statement function definitions may not be interspersed

with executable statements.

5.3.6 Normal Execution Sequence

Normal Execution Sequence is the execution of executable
statements in the order in which they appear in a program
unit. Execution of an executable program begins with the
execution of ‘the first executable statement of the main pro-
gram. When a subprogram is referenced by the name of the
subprogram,; execution starts with the execution of the first
executable statement of that subprogram. When a subprogram
is referenced by an entry name, execution starts with the
first executable statement following the corresponding ENTRY
statement.

5.3.6b

Statements that may cause other than the normal execution
sequence are:

(1) GO TO

(2) Arithmetic IF

(3) RETURN

(4) -STOP

(5) Input/Output statements containing an error speCLfler

or an end-of-file specifier

(6) A logical IF statement containing any of the above
’ forms

(7) The terminal statement of a DO-loop

5.3.6¢C ,

The execution sequence is not affected by the appearance of
nonexecutable statements or comment lines between executable
statements. .

5.3.64d
A program unit may not contain an executable statement that
can never be executed.

5.3.6e

If the execution sequence attempts to proceed beyond the last
executable statement of a main program, the effect is the
same as the execution of a STOP statement. If the execution
sequence attempts to proceed beyond the last executable
statement of a procedure subprogram, the effect is the

same as the execution of a RETURN statement.

5.3.6fF

In the execution of an executable program, a procedure sub-
program may not be referenced twice without the execution of
a RETURN statement or the effect of executing a RETURN state-
in that procedure having intervened.

DATA TYPES, CONSTANTS, AND STORAGE

5.4.1 Data Types

The ten types of data are:

(1) integer

(2) integer *2

(3) real -

(4) double precision
(5) complex

(6) logical

(7) character

(8) Hollerith

(9) bit

(10) address

Each type is different and may have a different internal
representation. The type may affect the interpretation of
the operations with which a datum is involved.

5.4.1.1 Data Type of a Name - The name employed to identify
a datum or function also identifies its type. A symbolic
name representing a variable, an array, or a function (ex-
cept generic functions) must have only a single type for each
program unit. Once identified with a particular type in a
program unit, a specific name implies that type for any usage
of that symbolic name that requires a type throughout that
program unit.

5.4.1.2 Type Rules for DATA and Procedure Identifiers - A
symbolic name that identifies a variable, an array, an exter-
nal function (except basic external and generic function),

a function entry, or a statement function may have its type
specified in a type statement as integer, integer *2, real,
double precision, complex, logical, character, bit or address.
In the absence of an explicit declaration, the type is implied
by the first character of the name: I,J,K,L,M, and N imply
type integer and any other letter implies type real, unless

an IMPLICIT statement is used to change the default implied

type.

5.4.1.2b
The data type of an array element name is the same as its
array name.

- .

5.4.1.2c

The data type of a function determines the type of the datum
it supplies to an expression in which that function is ref-
erenced.

5.4.1.2d

A symbolic name that identifies an intrinsic function or a
basic external function, when it is used to identify a func-
tion in Table 3 or 4 has a type as specified in the corres-
ponding table. An explicit type-statement is not required.
The generic function names (Table 5) do not have a predeter-
mined type; the result of a generic function reference as-
sumes a type that depends on the type of the argument.

-11-

5.4.1.2e

In a program unit in which an external function is referenced,
the type of the function is determined in the same manner

for variables and arrays. The type of a function subprogram
is specified either implicitly by its name, explicitly in

the FUNCTION statement, or explicitly in a type-statement.

For a function entry name, type is specified either impli-
citly by the name or explicitly in a type statement.

5.4.1.2f

If a generic function name appears: in a type-statement with-
~in a program unit, that name loses its generic property with-
in that program unit. ‘

5.4.1.2g

A symbolic name that identifies a subroutine or subroutine en-
try, common block, main program, or block data subprogram '
has no data type. ' : '

5.4.1.2h

There exists no mechanism to identify a symbolic name with

the Hollerith data type. Thus Hollerith data, other than con-
stants, are identified under the guise of a name of any other
type except character. :

5.4.2 Constants
The value of a constant does not change.

5.4.2.1 Data Type of a Constant - The form of the string rep-
resenting a constant defines both the value and the data

type. A PARAMETER statement allows a constant to be given a
symbolic name. The symbolic name of a constant assumes the
type implied in the form of its corresponding constant.

5.4.2.2 Signs of Constants - An unsigned constantis a con-
stant written without a sign. A signed constant is a con-
stant written with a plus or minus sign. An optionally signed
constant is a constant that may be either signed or unsigned.
Integer, integer *2, real, and double precision constants may
be optionally signed constants, except where specified other-
wise. A complex constant consists of a pair of optionally
signed real constants.

5.4.2.3 Blanks in Constants - Blank characters occurring in
a constant, except in a character or Hollerith constant, have
no effect on the value of the constant.

5.4.3 1Integer or Integer *2 Type

An integer or integer *2 datum is always an exact represen-
tation of an integer value. It may assume a positive,
negative, or zero value. If storage is allocated for an in-

-12-

teger *2 datum, two character storage units are assigned.

5.4.3.1 1Integer or Integer *2 Constant - An integer constant
or integer *2 constant 1is written as an optional sign fol- .
lowed by a nonempty string of digits. The digit string is
interpreted as a decimal number. ' ' :

5.4.3.2 Hexadecimal Constant - A hexadecimal constant is
written as X'nj,...n,' or Y'nj,...,ng'. Where: n; are
hexadecimal digits. They may be used in place of integer con-
stants. B

5.4.4' Real Type

A real datum is a processor approximation to the value of a
real number. The degree of approximation is five decimal di-
gits. It may assume a positive, negative, or zero value. If
storage is allocated for a real datum, one storage unit is
allocated.

5.4.4.1 < Basic Real Constant - A basic real constant is writ-
ten as an optional sign, an integer part, a decimal point, and
a fractional part in that order. Both the integer part and
the fractional part are strings of digits; either one of

these strings may be omitted but not both. A constant may

be written with more digits than the compiler will use to
approximate the value of that constant. A basic real con-
stant is interpreted as a decimal number.

5.4.4.2 Real Exponent - A real exponent is written as the
letter E followed by an optionally signed integer constant.
A real exponent denotes a power of ten to be multiplied by
the constant written immediately preceding it.

5.4.4.3 Real Constant - A real constant is written as a
basic real constant, a basic real constant followed by a real,
exponent, or an integer constant followec by a real exponent.

5.4.4.3b

The value of a real constant that contains a real exponent is
the value of the constant which precedes E of the real ex-
ponent multiplied by the power of ten indicated by the inte-
ger written following the E in the real exponent.

5.4.5 Double Precision Type

A double precision datum is a compiler approximation to the
value of a real number. This degree of approximation is to
fifteen decimal digits. A double precision datum may assume
a positive, negative, or zero value. If storage is allocated
for a double precision datum, two storage units are allocated.

5.4.5.1 Double Precision Exponent - A double precision expo-
nent is written and interpreted identically to a real exponent
except that the letter D is written instead of the letter E.

-13-

5.4.5.2 Double Precision Constant - A double precision con-
stant followed by a double precision exponent, or as an in-
teger constant followed by a double precision exponent.

The value of a double precision constant that contains a dou-
ble precision exponent is the value of the constant which pre-.
cedes D of the double precision exponent multiplied by the
power of ten indicated by the integer written following the

D in the double precision exponent.

5.4.5 A complex datum is a processor approximation to the
value of a complex number. The representation of the approx-
imation is in the form of an ordered pair of read data. The
first of the pair represents the real part and the second
represents the imaginary part of the complex datum. Each
part has the same degree of approximation as for a real datum.
If storage is allocated for a complex datum, two storage
units are allocated.

5.4.6.1 Complex Constant - A complex constant is written as
an ordered pair of optionally signed real constants, separa-
ted by a comma, and enclosed within parentheses. The first
real constant of the pair is the real part of the complex
constant and the second real constant of the pair is the im-
aginary part. .

5.4.7 Logical Type

A logical datum may assume only the values true or false.
If storage is allocated for logical datum, one storage unit
is allocated.

5.4.7.1 Logical Constant - A logical constant is written as
.TRUE. or .FALSE.; the value of .TRUE. is true and the value
of .FALSE. is false.

5.4.8 A character datum is a string of characters. This
string may consist of any characters capable of representation
in the processor. The blank character is valid and signi-
ficant in a character datum. The length of a character da-
tum is the number of characters in the string. If storage

is allocated for character datum, one character storage unit
is allocated for each character in the string.

5.4.8b

Each character in the string has a character position that

is consecutively numbered 1, 2, 3, etc. The number indicates
the sequential position of a character in the string, star-
ting at the left and proceeding to the right.

5.4.8.1 Character Constant - A character constant is written
as a contiguous string of characters; the first and last
characters must be apostrophes that delimit the constant.

-14-

The delimiting apostrophes are not part of the datum repre-
sented by the constant. An apostrophe within the datum
string is written as two consecutive apostrophes with no in-
tervening blanks.

5.4.8c

The length of a character constant is the number of charac-
ters written between the delimiting apostrophes, except that
each pair of consecutive apostrophes counts as a single char-
acter. The delimiting apostrophes are not counted. The length
of a character constant must be greater than zero. '

5.4.9 Hollerith Type

A Hollerith datum is a string of characters. This string
. may consist of any characters capable of representation in
the processor. The blank character is significant in a
Hollerith datum.

5.4.9.1 Hollerith Constant - A Hollerith constant is writ-
ten as a nonzero, unsigned integer constant n followed by

the letter H, followed by exactly n characters which comprise
the Hollerith datum. Any n characters capable of represen-
tation in the processor may follow the H.

5.4.9.1b
In a Hollerith constant, blanks are significant only in the
n characters following the letter H. :

5.4.9.2 Restrictions on the Use of Hollerith Constants - A
Hollerith constant may be written only in the argument list
of a CALL statement and in the DATA statement. '

5.4.10 Bit Type

A bit datum may assume only the values of one or zero. If
storage is allocated for a bit datum, one bit is allocated
and then storage is rounded up to the nearest character stor-
age unit.

5.4.10.1 Bit Constants - A bit constant may be represented
by a hexadecimal constant.

5.4.11 Address Constants

Address constants are written in the form A'nam' where nam is

an identifier associated with a variable, array, array element,
or statement label. The effect of an address constant in an
expression is to use the address of the named identifier or
label as opposed to its value. Address constants may only
appear in expressions involving other address constants, address
mode variables integer constants or integer variables.

-15~-

5.4.12 Stbragé

Storage may be allocated for a datum. The amount of storage
allocated depends on the type of the datum. , :

5.4.12.1 Storage Unit - If storage is alldéated to a datum,‘
one storage unit is allocated if it is integer, real, logical,

"~ or address, and two logically consecutive storage units are

allocated if the datum is double precision or complex.

5.4.12.2 Character Storage Unit - If storage is allocated to
a character datum of length n logically consecutive character
storage units are allocated. There are four character storage.
units for each storage unit. A n INTEGER*2 datum requires two
character storage units. A bit datum requires one character
storage unit.

ARRAYS

An array is a named and ordered set of data. An array element
is one member of the set of data. An array name is the sym-
bolic name of the array. An array element name is an array
name qualified with a subscript.

5.5b

Where it is permitted, the entire ordered set of data is iden-
tifiable simply by use of the array name. A single member of
the set is identifiable by use of an array element name.

5.5¢c ,

By treating a set of data as an array and using an array ele-
ment name, it is possible to identify and define or reference
a particular set of data based on the subscript value. In
different executions of a statement containing an array ele-
ment name, the array element name identify different array
elements depending on the value of the subscript during each
of the executions.

5.5.1 Array Declarator

An array declarator specifies a symbolic name that identifies
an array within a program unit, and specific certain proper-
ties of the array. -

5.5.1 Form of an Array Declarator - An array declarator is
of the form: ’

a (@ld4...)

where: a ,called the declarator name, is the symbolic name
of the array.

d is a dimension declarator
The number of dimensions of the array is the number of dimen-

sion declarators in the array declarator. The minimum number
of dimensions is one and the maximum is seven.

-16-

5.5.1.1.1 Form of a Dimension Declarator - A dimension dec-
larator is of the form:

where: di is the lower dimension bound
-4y is the upper dimension bound

The upper and lower bounds are arithmetic expressions, in
which all constants and variables are integer entities. Ex-
cluded from dimension bound expressions are function and ‘
array element references. Integer variables may appear in
dimension bound expressions only in adjustable array declara-
tors. '

5.5.1.1.2 Value of Dimension Bounds - If only the upper bound
is specified, the value of the lower bound is one.

5.5.1.1.2b

If the lower dimension bound is specified, its value may be
negative, zero, or positive; its value may be one. The value
of the upper dimension bound must be greater than or equal to
the value of the lower dimension bound.

5.5.1.2° Kinds and Occurrences of Array Declarators - Each ar-
ray declarator is either a constant array declarator or an
adjustable array declarator. A constant array declarator is

an array declarator in which each of the dimension bound ex-
pressions is a constant expression. An adjustable array declara-
tor is an array declarator in which one or more of the dimen-
sion bound expressions contains a variable.

5.5.1.2b :
Any variable that appears in an adjustable dimension declara-

tor expression must appear as a dummy argument or as an entity
in a common block in the program unit containing

5.5.1.2c

Each array declarator is either an actual array declarator or
a dummy array declarator. A dummy array declarator is an
array declarator in which the declarator name is a dummy argu-
ment or in common. An actual array declarator is an array
declarator which is not a dummy array declarator.

5.5.1.2d

Each actual array declarator must ‘be a constant array declara-
tor. An actual array declarator is permitted to appear in

a COMMON statement, a DIMENSION statement, or a type-statement.

5.5.1.2e

A dummy array declarator is permitted to be either a constant
array declarator or an adjustable array declarator. A dummy
array declarator is permitted to appear in a DIMENSION state-
ment or a type-statement but not in a COMMON statement.

-17-

5.5.1.3 Effect of an Array Declarator - The presence of
an array declarator in a program unit specifies that the
declarator name is an array name within that program unit.
Note that this enables the compiler to distinguish between
constructs which are identical in form, but which identify
different entities (for example, an array element name and
a function reference). :

5.5.2 Properties of an Array

The array declarator specifies the following properties of the
array: the number of dimensions of the array, the size and
bounds of each dimension, the number of array elements, and
the array element ordering.

5.5.2b

The properties of an array in a program unlt are determined
by the array declarator for that array name in that program
unit. The same array name may have different propertles in
different program units.

5.5.2.1 Data Type of an Array and an Array Element - An ar-
ray name has a data type. An array element name has the same
data type as the array name.

5.5.2.2 D1men51ons of an Array - The number of dimensions of
an array is equal to the number of dimension declarators in
the array declarator. The size of a dimension is the value:

d, - d +1

2 .
where: dl is the value of the lower dimension bound

do is the value of the upper dimension bound

Note that if the value of the lower dimension bound is one,
the size of the dimension is dj.

5.5.2.3 Number of Array Elements - The number of elements in
an array is equal to the product of the sizes of the dimen-
sions of the array indicated by the array declarator for

that array name. The size of an array is equal to the num-
ber of elements in the array.

5.5.2.4 The elements of an array are ordered sequentially
according to the array element subscript value. The first
element of the array has a subscript value of one; the second
element has a subscript value of two; the last element has a
subscript value equal to the size of the array. Whenever the
use of an entire array is indicated by an array name unquali-
fied by a subscript the elements of the array are taken ac-
cording to the array element ordering.

-18-

5.5.3 Array Element Names

- An array element name is of the form:
a:(s[,s}...)
where a is the array name
(s s .) is a subscript
s is a subscript expression
The number of subscript expressions must be equal to the num-
ber of dimensions in the array declarator for the array name

which the subscript qualifies, except 1n an EQUIVALENCE state-
ment.

5.5.4 Subscripts

Throughout this functional specification, the term subscript
includes the parenthesis that delimit the list of subscript
expressions. A subscript has a subscript value which deter-
mines which element of the array is 1dent1f1ed by the array
element ‘name.

5.5.4.1 .Form of a Subscript - A subscript is of the form:

(s ks}...)

where s is a subscript expression

The subscript value is specified in Table 1.

5.5.4.2 Subscript Expression - A subscript expression is any
integer, real, or double precision expression. A subscript
expression may contain array element references and function
references. Note that a restriction in the evaluation of ex-
pressions prohibits certain side effects. In particular,
evaluation of a function may not alter the value of any other
subscript expressions within the same subscrlpt.

5.5.4.2b

If the subscript value expression is of type other than in-
teger, the value is converted to type integer according to

the rules for arithmetic assignment statements before computing
the value of the subscript.

5.5.4.2c

The value of each subscript expression must be greater than

or equal to each corresponding lower dimension bound for the
program unit containing the subscript. The value of each sub-
script may exceed the corresponding upper dimension bound.
However, the subscript expression values are constrained such
that the subscript value must be greater than or equal to one

-19-

and must be less than or equal to the number of subscripts in
the array. '

5.5.4.3 Subscript Value - The subscript value is specified

in Table 1. The value of the subscript determines which array
element is identifed by the array element name. The sub-
script value depends on the values of the subscript expres-
sions in the subscript and on the dimensions of the array spe-
cified in the array declarator for that array in that pro-
gram unit. If the subscript value is K, then the Kth ele-
ment of the array is identified.

Table 1

Subscript Value

Dimension ‘ Subscript

Dimen- L
sions Declarator Subscript Value 1
1 (dy7:4;,) (1) 1+ (8-d)) |
. ‘ 2 721 1 |
3 (d7:d),0dy72d55,d3,:d3,) (51+8,,53) 1+ (81-d4;)
+ (Sp=dpy)*dy |
+ (S3-d31)*d2*dl I
) |
- q . -a) |
n (dllodlzlooo,dnl-dnz) (Sl'... ,Sn) 1 + (Sl dll) '

+ (S3=d3p)*dy*d,;
+ e & o

n-2 1

Notes for Table 1:

(1) 1 2n 27
(2) dil is the value of the lower bound of the ith dimension

(3) di, is the value of the upper bound of the ith dimension
(4) 1If only the upper bound is specified, then di; =1

(5) si is integer value of ith subscript expression

(6) di is size of ith dimension

di = dié’— di; +1
If the value of the lower bound is 1, then di = di2

-20-

5.5.4.3c

A consequence of Table 1 is that a subscript of the form
(d11,...,dn1) has a subscript value of one and identifies
the first element of the array. A subscript of the form
(d12,...,dn2) identifies the last element of the array; its
subscript value is equal to the number of elements in the
array.

5.5.4.34d

Note that the subscript value and the subscript expression
value may not be the same, even for a one dimensional array.
For example, given:

DIMENSION A(-1:10),B(10,10)
A(2) = B(1,2)

then A(2) identifies the fourth element of A, the subscript
is (2) with a value of four, the subscript expression is 2
with a value of two, B(l,2) identifies the eleventh element
of B, the subscript is (1,2) with a value of eleven, and the
subscript expressions are 1 and 2 with values of one and two.

5.5.5 Dummy,Arrays

A dummy array is an array for which the array declarator is
a dummy array declarator. A dummy array is permitted only in
a function or subroutine subprogram.

5.5.5b

At the time of execution of a reference to a subprogram that
contains a dummy array, the actual argument corresponding to
the dummy array name must be either an array name or an array
element name. If the actual argument is an array name, then
the size of the dummy array must not be greater than the size
of the actual -argument array. If the actual argument is an
array element name with a subscript value of p in an array
size n, then the size of the dummy array must not exceed
n+l-p. Each dummy array name must be associated through one
or more levels of external procedure references with either
an actual array name or an actual array element name.

5.5.5.1 Adjustable Arrays and Adjustable Dimensions - An
adjustable array is an array for which the array declarator
is an adjustable array declarator. In an adjustable array
declarator, those dimension declarators that include a vari-
able name are called adjustable dimensions.

5.5.5.1b

An adjustable array declarator must be a dummy array declara-
tor. At least one dummy argument list of the subprogram
must contain the name of the adjustable array. A variable
name that appears in a dimension declarator expression must
also appear as a name either in every dummy argument list

or in a common block in that subprogram,

-7 =

5.5.5.1c

At the time of execution of a reference to a subprogram that
contains an adjustable array, each actual argument that
corresponds to a dummy argument that appears in an adjus-
table dimension expression and each variable in common that
appears in an adjustable dimension expression must have a de-
fined integer value. The values of those dummy arguments or
variables in common, together with any constants that appear
in that adjustable dimension expression, determine the size

of the corresponding adjustable dimension for that execution
of that subprogram. The sizes of the adjustable dimensions
and of any constant dimensions that appear in an adjustable
array declarator determine the number of elements in that ar-
ray and the array element ordering. The execution of different
references to a subprogram or different executions of the same
reference determine possibly different properties (size of
dimensions, dimension bounds, number of elements, and array
element ordering) for each adjustable array in that subprogram.
These properties depend on the values of any actual arguments
and variables in common that are referenced in the adjustable
dimension expressions in that subprogram.

5.5.5.1d

During execution of a subprogram containing an adjustable ar-
ray, the array properties of dimensionsize, upper and lower
dimension bounds, and array size (number of elements in the
array) do not change. However, the variables involved in an
adjustable dimension may change or become undefined during
execution of the subprogram but such a change or undefinition
does not affect the above mentioned properties.

5.5.6 Use of Array Names and Array Element Names

For a symbolic name to be an array name in a program-unit, it
must appear as a declarator name in that program unit. Only

one array declarator for an array name is permitted in a pro-
gram unit. : :

5.5.6b

A symbolic name that is used to identify an array or an array
element may be used also in the same program unit to identify
a common block but must not be used in the same program unit
to identify any other entity.

iﬁséGSrogram unit, each appearance of an array name must be
in an array element name except in the following cases:

(1) in the list of an input/output statement

(2) in a list of dummy arguments

(3) in the list of actual arguments in a reference to

an external procedure

-22-

(4) in a COMMON statement
(5) in a type-statement

(6) as the format identifier in an 1nput/output
statement

(7) in an EQUIVALENCE statement
(8) in a DATA statement

(9) in an array declarator. Note that although the form
of an array declarator is identical to one of the
forms of an array element name, an array declarator
is not an array element name.

(10) in a SAVE statement

(11) As the internal unit identifier of a storage file
"~ in an input/output statement

5.5.6d

Whenever an array name unqualified by a subscript is used to
designate the whole array, the appearance of the array name
implies that the number of values to be processed is equal to
the number of elements in the array and that the elements:

of the array are taken in consecutive sequential order.

EXPRESSIONS
This section gives the formation and evaluation rules for arith-
metic, relational, character, and logical expressions. An

expression is formed from operands and operators.

5.6.1 Arithmetic Expressions

An arithmetic expression is used to express a numeric compu-
tation. Evaluation of an arlthmetlc expression produces an
arithmetic value.

5.6.1b :

The simplest form of an arithmetic expression is an unsigned
constant, a variable reference, an array element reference, or
a function reference. More complicated arithmetic expressions
may be formed by using one or more arithmetic operands to-
gether with arithmetic operators and parentheses. The order’
in which the indicated operatlons are performed in the evalu-
ation of an arithmetic expression depends on the appearance

of parentheses, the priority of the operators, and the data
type of the operands. :

5.6.1.1 Arithmetic Operators - The five arithmetic opera-
tors are: '

-23-

Operator Representing

* & exponentiation
/ division

* multiplication
- subtraction

+ addition

Each of the arithmetic operators is used to express a numeric
computation to be performed on arithmetic operands. Each of
the operators **, /, and * operates on a pair of operands

and is written between the two operands. Each of the operators
+ and - either:

(1) operates on a pair of operands and is wrltten be-~
tween the two operands, or

(2) operates on a single operand and is written pre-
- 'ceding that operand.

5.6.1b ,
The operation identificed by each of the arithmetic operators
in each form of use is as follows: ’

Use of Operator Operation
X1 **X, Exponentiate Xj; to the power X,
Xy /Xz | Divide X; by X,
x1 #x2 ‘ Multiply X; and X,
X Xy Subtract X, from X;
,‘XQ» Subtract X2 from zero
‘ Xy +X, Add X, and X;
+Xy Add zero and X,

where: X; denotes the operand to the left of the operator
xé denotes the operand to the right of the operator.

When an integer operand is divided by an integer operand,

any fractional part in the quotient is discarded. The result
is the nearest integer whose magnitude does not exceed the mag-
nitude of the mathematical value of the quotient. For example,
the value of the expression (-8)/3 is -2.

5.6.1l.1c

The priority of the operators is implied in the rules for the
formation and evaluation of arithmetic expressions. In general,
the order in which the indicated operations are performed de-

-24-~

pends on the priority of the operators appearing in an expres—
sion, unless the order is changed by the use of parentheses

(6.1.3). - The priority of each arithmetic operator is:
Ogerator : Priority |
k% highest
*'and / intermediate
+ and - lowest

For example, in the expression
-A *f 2

the exponentiation operator (**) has a higher priority than
the subtraction operator (-); the value of the above expres-
sion is the same as the value of the expression

-(A*?Z)

5.6.1.2 Arithmetic Operands - An arithmetic expression and
the operands in an arithmetic expression must identify values
of one of the arithmetic data ‘types: integer, real, double
precision,‘or complex. The operands may all be of the same
type or may be of different types. A mixed-type arithmetic
expression is an arithmetic expression that contains operands
of different data types. Except for a value raised to an in-
teger power, the evaluation of a mixed-type arithmetic expres-
sion includes an implied conversion of data type of some of the
operands as that evaluation proceeds. The order of evaluation
of integer expressions and of mixed-type expressions is more
restricted than the order of evaluation of real, double pre-
cision, or complex expressions.

5.6.1.2b
The arithmetic operands are:

(1) primary
(2) factor
- (3) product
(4) term
(5) arithmetic expression

5.6.1.2.1 Primaries - A primary is one of the forms:

(1) unsigned constant

(2) variable reference

(3) array element reference

(4) function reference

(5) arithmetic expression enclosed in parentheses

-25~

5.6.1.2.1b

The data type of each of the first four kinds of primaries
is identified by the form of the constant or the name of the
datum or function (Section 4). The data type of a primary of
the form (5) is the data type of the value of the expression
as defined in Tables 6.1 and 6.2, and is independent of the
context in which that primary appears. For example, in the
expression

(5/2) * A ** (5/2)

the primary (5/2) identifies the integer value 2 in each oc-
currence. ’

5.6.1.2.2 Factors - a factor -is of one of the forms:

(1) primary
(2) primary ** factor

Form (2) requires that exponentiation operations are performed
from right to left within a factor that contains two or more
exponentiation operators. For example, the factor

2 ¥% 3 k% 2

is equiValent in value to the factor
2 **‘13**2)

5.6.1.2.2b

The data type and value of a factor that contains exponenti-
ation is shown in Table 6.2.

5.6.1.2.3 Products - A product is of one of the forms:

(1) factor
(2) product * product

Form (2) permits the associative law of multiplication to be
used by a processor to group the factors in the evaluation of
any product that contains two or more multiplication opera-
tors. For example, the value of the proucts

A*B*C*D
“is the Same as the value of any of the following products:
((A*B) * C) *D
A * (B * (C*D))
(A*B) * (C*D)

(A * (B*C)) *D
A * ((B*C) *D)

-26~

The commutative law of multiplication maY'be used by a pro-
cessor to order the factors within a product. For example,
the value of the product

A *¥ B * C

is the same as the value of any of the following products:

A * C.*B
B * A *C
B *vc * A
C*A*B
C *B * A
5.6.1.2.3b

The data type and value of a product that contains two or more
factors is shown in Table 6.1.

5.6.1.2.4 Terms - a term is of one of the forms:

(1) product

(2) term/factor
(3) term * product
(4) term * term

The commutative and associative laws of multiplication may
be used by a processor to order the factors in a term.

5.6.1.2.4b -

Forms (1), (2), and (3) may be used by a processor in the eval-
uation of any term. Form (4) of a term may not contain inte-
ger division in the right operand. For example, in the expres-
sion o _

B/A * 1/J

is written, it may not be interpreted by the processor to
mean ' ;

(B/A) -* (1/J)

The only valid interpretation is by use of form (2) and form
(3) and is

((B/A) * 1)/3

Note that the restriction placed on the use of form (4) means
that integer terms and some mixed-type terms must be evaluated
in effect from left to right.

5.6.1.2.4c

In a term that contains two or more successive division oper-
ators, the division operations must be performed in left to
right order. For example, the value of the term

-27-

8. / 4. / 2.
is one.

5.6.1.2.44.
Form (3) may be used to evaluate the term

A/B*C?*D

The vaiUe of the above term is the same as the value of the
term

(a/B) * (C*D)

5.6.1.2.4e
Form (4) may be used to evaluate the term

A * B/C
in the following order:
A * (B/C)

However, if the factors are of integer type, only form (2) may
be used. The term must be evaluated in the following order:

(A*B) / C
Note that

the. value of (8*7) / 4 is 14 but
the value of 8 * (7/4) is 8

5.6.1.2.4f |
The data type and value of a term is shown in Table 6.1.

5.6.1.2.5 Arithmetic Expressions - An arithmetic expression
is of one of the forms:

(1) term

(2) + term

(3) - term

(4) arithmetic expression + term
(5) arithmetic expression - term

Each arithmetic expression is mathematically equivalent to an
arithmetic expression that is a sum of terms. For example,
the value of the expression

A-B+C
is the same as the value of the expression

A+ (-B) + C

-28-

The associative law of addition may be used by a processor
to associate the terms to be summed. For example, the value
of the expression

A+B-C

is the same as the value of either of the following expres-
sions:.

(A+B) - C
A + (B-C)

The commutative law of addition may be used by a processor to
order the operands. For example, the value of the expression

A+B-2C

is the same as the value of any of the following expressions:

5.6.1.2.5b

Forms (4) and (5) of an arithmetic expression specify that it
is formed in left to right order. However, a processor may
evaluate anexpression in any mathematically equivalent order
that results from the use of the associative and commutative
laws of addition..

5.6.1.2.5c
The data type and value of an expression is shown in Table 5.6.1.

5.6.1.3 Use of Parentheses in Arithmetic Expressions - An
expression enclosed in parentheses is a primary.

5.6.1.3b

The type and value of an expression enclosed in parentheses

are determined solely by applying the rules of Section 6.1

to the constituents of that expression and are independent of
the contest in which the expression occurs. For example, given
either of the expressions

R * (I/J)
(1/3) * R

the type and value of I/J is determined independently of the
type and value of R.

5.6.1.3c -

In the evaluation of an expression, a processor must not vio-
late the integrity of an expression enclosed in parentheses.
For example, a processor must not apply any of the distributive

-29-

laws of atithmetic. Thus, the expression
‘A * (B-C)

must not be evaluated as if it were
A *.'B.— A*C

5.6.1.3d , _
Sometimes the use of parentheses is required in order to ex-
press a computation in a single statement. For example:

A /. (B-C)

Note that the formation rules do not permit two consecutive
operators such as A**-B or A+-B. These incorrect forms may
be written using parentheses as A**(-B) and A+ (-B) respectively.

5.6.1.3e

When the order of evaluation is not specified completely by

the use of parentheses, a processor may revise the order of
evaluation by using the commutative and associative laws as
specified above. Alternative orders of evaluation are equiva-
lent in that they all denote the same mathematical value. How-
ever, the processor approximation to the mathematical value
computed by one valid order of evaluation may be different

from the processor approximation computed by another valid
order of evaluation. When an expression is written, additional
parentheses may be included to restrict the orders of evalua-
tion available to a processor. ‘

Parentheses are useful for controlling the magnitude and the
accuracy of intermediate values developed during the evalua-
tion of an expression. For example,

A + (B-C)

causes B-C to be evaluated before the addition of A. Note
that the inclusion of parentheses may cause an expression to
denote a different value. For example, the two expressions

A*I/J
A * (I/J)

may denote different values if I and J identify factors of
integer data type.

5.6.1.4 Type and Value of Arithmetic Expressions - The data
type and value of the result of the arithmetic operators opera-
ting on two operands is shown in Tables 6.1 and 6.2.

5.6.1.4b
The data type of the result of the operators + or - operating
on a single operand is the data type of that operand. The

-30-

value of the result of + or - operating on a single operand
X., is equivalent to + or - operating on two operands Xj and
X5 where the value of X] is zero and the type of X; is the
type of Xj.

5.6.1.4c
Table 6.1

 Type and Value of Result for +

I, R2

=I; + I, FLOAT(Il) + Ry

I
D

= D + DFLOAT(I) = D; + DBLE(R;)

0 o =W W
Il

C=C1+CMPLX(FLOAT(12),0.) Cy + CMPLX(R2,0.)

bawr wwr @w oww owr ww] oes e e
s o e me ee or ow]ae e

D C

2 2

D = DFLOAT(Il) + Dy C=CMPLX(FLOAT(11),O.)+C2

‘D = DBLE(R;) + D, C = CMPLX(Ry,0.) + Cy
D = D; + Dy Prohibited

Prohibited

c=cp

Table 6.2

Type and Value of Result for **

—-—-——..-—.1—-—1

: 1 | | |

3 © 0 1, | R) ' D, e,)
+ .

| I=1,%*I, | R=FLOAT (I,)**R D=DFLOAT (I)**D 1 p '

) TRt 1 2 (1)**Dy ' |

: R=R; **I, ! R=R; **R, | D=DBLE(R;)**D, be oy

_ - | — |

| D=D;**I, | D=Dj**DBLE (R,) | D=D; **D, : P ‘

} C=C1**I2 (Prohibited t Prohibited | P i

| 1 [1

e o e e e e wd o

e > v wm oo o wn, b o @

5.6.1.4d
Notes for Tables 6.1 and 6.2:

(1) the form of the table entry is
t = X3 + X,
where t is the type of the result and the expression to

the right of the equals indicates the value of the result.
The + operator in Table 6.1 may be replaced by -, *, or /.

(2) FLOAT, DFLOAT, DBLE, and CMPLX are the type conversion func-
tions described in Table 5.

(3) X; denotes the left operand
X, denotes the right operand
I” denotes integer data type

R denotes real data type

D denotes double precision data type

C denotes complex data type

P denotes a prohibited combination
5.6.1.4e

The order of evaluation used by a processor in a mixed-type ex-
pression may affect the data type of intermediate values de-
veloped during the evaluation of the expression. For example,
in the evaluation of the expression

D+R+ I

where D, R, and I identify terms of double precision, real,
and integer data type respectively, the data type of the oper-
and that is added to I may be either double precision or

real depending on which pair of operands (D and R, R and I,

or D and I) are added first.

5.6.1.4f

Eacept for a value raised to an integer power, Tables 6.1 and 6.2
specify that if two operands are of different data type, then
the operand that differs in type from the result of the opera-
tion is performed on operands of the same type. When a value

is raised to an integer power, neither operand is converted.

5.6.1.5 Restrictions on Evaluation of Arithmetic Expressions -
The following are prohibited in the execution of an executa-
ble program:

(1) any arithmetic operation whose result is not mathe-
matically defined.

(2) division by zero
(3) raising a zero-valued primary to a zero-valued or

-32-

'.‘negative—valued power

(4) raising a negatlve—valued primary to a real or
double precision power.

5.6.1.6 Constant Expression - A constant expression is an
arithmetic expression whose primaries are either an unsigned
arithmetic constant or a constant expression enclosed in par-
entheses. Note that symbolic names of constants are allowed
but variable, array element, and function references are not
allowed.

5.6.1.6b

An integer constant expression is a constant expression in
which all constants are integer constants. The following
are examples of constant expressions:

3
-3

-4+4

4 (1.6%*2)

The first three expressions are also integer constant expres-
sions.

5.6.2 Character Expressions

Evaluation of a character expression produces a result of a
type character.

6.2b

The simplest form of a character expression is a character
constant, a character variable reference, a character array
element reference, a character substring reference, or a
character function reference. More complicated character
expressions may be formed using one or more character oper-
ands together with character operators and parentheses.

5.6.2.1 Character Substrings - A character substring is used
to identify, define, or reference a contiguous portion of a
character variable or character array element.

5.6.2.1. l Substrlng Names - A substring “name is of one of
the forms:

v (e
a ([en

where:

o "2

G

[3

i_“gz_'j 7 S g’,s].oo)

is a character variable name

<

a (5,5...) is a character array ¢lement name

gi_and €y, called substring expressions, afe integer,

-33-

real, or double precision expressions.

5.6.2.1.1b

e, specifies the leftmost character position and e, specifies
E%e rightmost character position of the substring.” For exam-
ple, A(2:4) specifies characters in positions two through
four of character variable A, and B(l1:6,4,3) specifies char-
acters in positions one through six of character array ele-
ment B(4,3).

5.6.2.1.1c :
The values of e; and e, must be such that:

L 4 ﬁ.’;
1< 915\32 4 len

where len is the length of the character variable or array ele-
ment. If e; is omitted, a value of one is implied for ej.
If ey is omitted, a value of len is implied for e Both

and e ‘may be omitted; for example, the form v% :) is equiva-
l%nt to - v, and the form a(:s [,s] ...) is equivalent to

a(s {}q} .o

5.6.2.1.2 Substring Expressions - A substring expression is
any integer, real, or double precision expression. A substring
expression may contain array element references and function
references, but a function reference may not alter the value
of any entities that appear in the same substring reference.

I1f the value of a substring expression is not of type inte-
ger, the value is converted to type integer according to the
rules for arithmetic assignment statements (Table 2).

5.6.6.2 Character Operator - The character operator is:

Ogerator Representation
//7 . Concatenation
5.6.2.2b
The operation identified by the operator is:
Use of Operator Operation
Xl'//Xz Concatenate X; with X,
where: ‘Xl denotes the operand to the left of the operator
Xy denotes the operand to the right of the operator

5.6.2.24

The result of a concatenation operation is a character string
whose value is the value of X; concatenated on the right with
the value of X; and whose length is the sum of the lengths- of
X, and X5.

-34-

5.6.2.2c :

Where there are sequential concatenation operators, concatena-
tion proceeds from left to right. For example, the value of
'AB' // 'CD' // 'EF' is the string 'ABCDEF’.

5.6.2.3 Character Operands - A character expression and the
operands in a character expression must identify values of
type character.

5.6.2.3.1 Character Primaries - A character primary is of one
of the forms:

(1) character constant

(2) character variable reference

(3) character array element reference

(4) character substring reference

(5) character function reference

(6) character expression enclosed in parentheses.

5.6.2.3.2 Character Expressions - A character expression
is of one of the forms:

(1) character primary
(2) character primary // character primary

5.6.3 Relational Expressions

A relational expression is used to compare two arithmetic
expressions or two character expressions. A relational expres-
sion may not be used to compare an arithmetic expression with

a character expression.

5.6.3b

Relational expressions may appear only within logical expres-
sions. Evaluation of a relational expression produces a re-
sult of type logical with a value of true or false.

5.6.3.1 Relational Operators - The relational operators are:

Operator Representing

.LT. Less than

.LE. Less than or equal to
.EQ. Equal to

.NE. Not equal to

.GT. Greater than

.GE. Greater than or equal to

5.6.3.2 Arithmetic Relational Expressions - A relational ex-
pression involving arithmetic expressions is of the form:

e relop e,

-35-

where: e; and e, are both arithmetic expressions of type
» integer, real, or double precision

relop is a relational operator

5.6.3.2b

A relational expression is evaluated by first evaluating each
of the arithmetic operands. The numeric values of the arith-
metic operands are compared as specified by the relational
operator. The resulting value is true or false.

5.6.3.2¢C
If the two arithmetic expressions are of different types, the
value of the relational :expression '
e; relop e,
is the value of the expression
((ey) - (e2)) relop O
where 0 (zero) is of the same type as the expression ((ej) -

(e5)), and relop is the same relational operator in both ex-
pressions.

5.6.3.3 Character Relational Expressions - A relational expres-
sion involving character expressions is of the form:

gi reiop e
where: ej; and e, are both character expressions

relop'is a relational operator

5.6.3.3b

A relational expression is evaluated by first evaluating each
of the character operands. The character values of the oper-
ands are then compared as specified by the relational operator,
with a resulting value of true or false. If the operands are
of unequal length, the shorter operand is considered as if it
were extended on the right with blanks to the length of the
longer operand.

5.6.3.3c

e, is considered to be less than e, if the value of e precedes
tﬁe value of e, in the collating sequence; e; is greater

than e, if e; follows ej in the collating sequence. Note

that the collating sequence depends upon the processor.

5.6.4 Logical Expressions

A logical expression is formed with logical operators and logi-

-36-

cal operands. Evaluation of a logical expression produces a
result of type logical with a value of true or false.

5.6.4.1 Logical Operators - The logical operators are:

Operator - Representing

.NOT. Logical negation
.AND. Logican conjunction
.OR. Logical disjunction

5.6.4.2 Logical Operands - The logical operands are:

(1) logical primary
(2) logical factor

(3) logical term

(4) logical expression

5.6.4.2.1 Logical Primary - A logical prlmary is of one of
the forms.

(l)vlogical constant

(2) logical variable reference

(3) logical array element reference

(4) logical function reference

(5) relational expression -
(6) logical expression enclosed in parentheses

5.6.4.2.2 Loglcal Factor - A logical factor 1s of one of the
forms: :

(1) logical primary
(2) .NOT. logical primary

5.6.4.2.3 Logicai Term - A logical term is of one of the

(1) logical factor ‘
(2) logical term .AND. logical term

5.6.4.2.4 Logical Expression - A logical expression.is of"
one of the forms:

(1) logical term
(2) logical expression .OR. logical expression

5.6.4.3-‘Value of Logical Factors, Terms, and Expressions - The
value of a factor involving .NOT. is shown below:

-37-

:‘ Value of | Value of :
X ' - NOT [] X N
{ 2 . 2 i
— }
true | false t
I false I true (

The value of a logical term involving .AND. is shown below:

{ ‘Value ‘: Value : Value of |
3 qf X | of X, 'xl .AND. X, 1
o 1] Y
': true I true | true R
, | | |
| true I false false '
i | :
) false | true J false |
- |
__}v false : false false }

The value of a logical expression involving .OR. is shown below:

false

‘;v Value | Value : Value of :
| of X jofX, ; X .OR. X
I ' | X
:‘ true : true : true R

EE 1
: true : false : true 1

| false | true | true :
) |

1 false ! false :

5.6.5 Evaluation of Expressions
When two}dperands are combined by an operator, the left or the

-38-

rlght operand may be evaluated first.

5.6.5b
A part of an expression need be evaluated only if such action
is necessary to establish the value of the expression.

5.6.5¢ :
If a statement contains a part of an expression that need not
be evaluated, and if this part contains a function reference,
then all entities that might be defined in that reference
become undefined at the completion of evaluation of the expres-
sion containing the function reference. For example, if the .
function F defines its argument X, then the statement

IF(.TRUE. .OR. F(X)) GO TO 10
causes X to become undefined.

. 5.6.54

Any use of an array element name requires the evaluation of
its subscript. The evaluation of functions appearing in a
statement may not alter the value of any other entity within
the statement in which the function reference appears. The
evaluation of a function appearing in a statement may not al-
ter the value of any entity in common that affects the value
of any other function referenced in that statement. However,
evaluation of a function in the expre551on e of a logical IF
statement (11.5) may affect entities in the statement st that
is executed when the value of the expression e is true.

5.6.5e .

The data type of the expre551on in which a function reference
appears does not affect, nor is it affected by the evaluation
of the actual arguments, except when the data type of a gener-
ic function is determined by the data type of its arguments.

. The data type of the expression in which a subscript appears
does not affect, nor is it affected by, the evaluation of the
subscript.

5.6.5f

Any variable, array element, function, or character substring
referenced as a primary in an expression must be defined at
the time of its use. Note that if a character string or sub-
string is referenced, all of the characters of that string
or substring must be defined at the time of reference.

5.6.5g

If a function subprogram may produce different results when
referenced with the same argument list, that function must not
be referenced more than once in one statement.

5.6.5h
If a function reference in a statement causes definition of
an actual argument of the function, that argument or associated

-39~ .

entities must not appear elsewhere in the statement. For exam-
ple, the statement:

Y = F(X) + X

is prohibited if the reference to F defines X.

-40-

EXECUTABLE OR NONEXECUTABLE STATEMENT CLASSIFICATION

Each statement is classified as executable or nonexecutable. Exe-
cutable statements specify actions and form an execution sequence

in an executable program. Nonexecutable statements describe char-
acteristics, arrangement, and initial values of data, contain edi-
ting information, define statement functions, specify the classifi-
cation of program units, and specify entry points within subprograms.
Nonexecutable statements are not part of the execution sequence.
Nonexecutable statements may be labeled, but such statement labels
may not be used to control the execution sequence.

5.7.1 Executable Statements

The follow1ng statements are classified as executable:

(l) Arithmetic, logical, ASSIGN, character, and address
- assignment statements.

(2) Unconditional, a551gned and computed GO TO state-
‘ ments.

(3).Ar1thmeti¢ IF and logical IF statements.
(4):CONTINUE statement

(5) STOP’and PAUSE statements

(6) DO statement

(7) READ, WRITE, and PRINT statements

(8) REWIND, BACKSPACE, ENDFILE, BACKFILE SKIPFILE OPEN,
CLOSE, and INQUIRE statements

(9) CALL and RETURN statements
(10) END statement
(11) PUSH and PULL statements

5.7.2 Nonexecutable Statements

The following statements are classified as nonexecutable:

(1) PROGRAM, FUNCTION, SUBROUTINE, ENTRY, and BLOCK
. DATA statements.

(2) DIMENSION, COMMON, EQUIVALENCE, type-statements,
: IMPLICIT, PARAMETER, EXTERNAL, INTRINSIC, SAVE,
and STACK statements. i
(3) DATA statement

(4) FORMAT statement

-41-

(5) Statement function definition statement.

5.8 SPECIFICATION STATEMENTS
There are ten kinds of specification statements:

(1) DIMENSION statement

(2) COMMON statement

(3) EQUIVALENCE statement
(4) Type-statements

(5) IMPLICIT statement

(6) PARAMETER statement

(7) EXTERNAL statement

(8) INTRINSIC statement

(9) SAVE statement

(10) STACK statement

All specification statements are nonexecutable.

5.8.1 DIMENSION Statement

A DIMENSION statement is used to declarfthe symbolic names
and dimension specifications of arrays.

5.8.1b
A DIMENSION statement is of the form:

DIMENSION a (d) [}gjgi]
where each a(d) is an array declarator.

5.8.1lc

Each declarator name a appearlng in a DIMENSION statement
declares a to be an araay in that program unit. Note that
array declarators may also appear in COMMON statements and
type-statements. Only one appearance of a symbollc name as
an array declarator name in a program unit is permitted.

5.8.2 COMMON Statement

A COMMON statement is of the form
COMMON / ¢cb / nlist / cb / nlist ...
where: cb is a common block name
nlist is a list of the form a f} al...

a is either a variable name, an array name, Or an
array declarator. Dummy arguments are not permitted.

5.8.2c
Each omitted cb specifies the blank common block. If the first

-42-

cb is omitted, the first two slashes are optional.

5.8.2d

In each COMMON statement, the entities occurring in an nlist
following a block name cb are declared to be in common block
cb. All entities from the beginning of the statement until

the appearance of a block name, or all entities in the state-
ment if no block name appears, are declared to be in blank com-
mon. Alternatively, the appearance of two slashes with no
block name between them declares the entities that follow to

be in blank common.

5.8.2e

Any common block name cb or an omitted cb for blank common

may occur more than once in one or more COMMON statements in

a program unit. Thelist nlist following each successive ap-
pearance of the same common block name is treated as a contin-
uation of the list for that common block name. -

5.8.2f

If a character variable or character array is in a common

" block, all of the entities in that common block must be of
type character. Note that entities associated with an entity
in a common block are considered to be in that common block.

5.8.2g

Within a program unit, variables and arrays in each common
block have consecutive storage in the order of their appear-
ance in the lists in one or more COMMON statements. An array-
name or array declarator causes all of the elements of that
array to have consecutive storage in the order specified in
5.2.4. Each real, integer, or logical variable or array ele-
ment has one storage unit, each double precision or complex
variable or array element has two consecutive storage units,
and each character variable or array element has one character
storage unit for each unit of length as specified in a-
CHARACTER statement (8.5.2). Within a program unit, each com-
mon block will have unique storage. An entiry appearing in a
list nlist may not be associated with any other entiry ap-
pearing in'any list nlist of any COMMON statement within that
program unlt

5.8.2h

The size of a common block is measured in storage units or
character storage units and is the sum of the storage of vari-
ables and arrays declared in COMMON statements to be in the

" block plus any increase in size of the block caused by the

use of EQUIVALENCE statements. EQUIVALENCE statements do not
affect the order of assignment of storage to entities in com-
mon blocks, but their use may increase the size of a block

5.8.21

Within an executable program, all named common blocks that
have the same name must be of the same size and will have the
same storage. All blank common blocks within an executable

-43-

program are not required to be of the same size, but all such
blocks begin at the same storage unit or character storage
unit and thus share some of the same storage. Any entities
that share the same storage become associated and become
defined and undefined according to the rules in 5.17.3 and
5.17.4.

5.8.2.1 Differences between Named Common and Blank Common -
A blank common block has the same properties as a named com-
mon block,. except for the following:

(1) Entities in named common blocks may be initially de-
fined by means of a DATA statement in a block data
subprogram, but entities in blank common may not
be initially defined (Section 9). o

(2) In different program units of an executable program,
a specific named common block must be of the same
length in all program units in which it appears,
but blank common blocks may be of different lengths.

(3) Execution of a RETURN or END statement sometimes
causes undefinition of entities in named common blocks,
but never causes undefinition of entities in blank

- common (15.11).

5.8.3 EQUIVALENCE Statement

The EQUIVALENCE statement is used to specify the sharing of
storage by two or more entities. '

5.8.3b
An EQUIVALENCE statement is of the form:

EQUIVALENCE (nlist) [, (nlistﬂ .
where: nlist is a list of the forma, a [,a]...

a is either a variable name, an array element
' name, an array name, or a character substring
name. Each list must contain at least two
names. Dummy argument names may not appear in
the list.

If a is an array element or character substring name, its
subscript expressions or substring expressions must be in-
‘teger constant expressions.

5.8.3c

Each of the entities in a given list nlist shares some or all
of the same storage. If a two-storage-unit entity and a one-
storage-unit entity both appear in the same list nlist, the
latter will share storage with the first storage unit of the
former. The EQUIVALENCE statement should not be used to
equate mathematically two or more entities. There is no

-44-

implied type conversion when the equivalenced entities are of
different type. If a variable and an array both appear in

the same list nlist, the variable does not have array proper-
ties and the array does not have the properties of a variable.

5.8.3d4 "

An entity of type character may be equlvalenced only with
other entities of type character. The lengths of the equiva-
lenced entities are not required to be the same. The first
character of the equivalenced entities share storage and
therefore are associated. Any adjacent characters in equiva-
lenced character entities also share storage and are associ-
ated. For example, given: :

CHARACTER A*4, B*4 C*3(2)
EQUIVALENCE (A,C(1)), (B,C(2))

then the association of A, B, and C can ge graphically illus-
trated as: ’

01 02 03 04 05 06 07

-—C(1)-- --(C(2)--

5.8.3.1 Array Names and Array Element Names in EQUIVALENCE
Statements - If an array element name appears in an EQUIVALENCE
statement, the number of subscript expressions must be either
one or n, where n is the number of dimensions in the array
declarator for the array name. If the array subscript con-
tains only one expression, the subscript value is computed ac-
cording to Table 1 (5.4.3) for a one-dimensional array.

5.8.3.1b

The use of an array name unqualified by a subscript in an
EQUIVALENCE statement has the same effect as using an array
element name that identifies the first element of the array.

5.8.3.2 COMMON and EQUIVALENCE - Storage of variables and ar-
rays declared expllcltly in a common block must be consecutive
in the order specified in the COMMON statement. Within a
program unit, storage is unique for each entity appearing in

a list in a COMMON statement unless EQUIVALENCE statements
cause it to be shared with entities not appearing in a list

in a COMMON statement. An entity equlvalenced with an entity
in a COMMON statement is considered to be in that common block.

5.8.3.2b

When two or more variables or array elements share storage be-
cause of the effects of EQUIVALENCE statements, at most one

of those variables or arrays may appear in the lists of

the COMMON statements within a program unit.

-45—

5.8.3.2c

An EQUIVALENCE statement does not alter the orderlng of en-
tities in a common block, but it may lengthen a common block;
‘the only such 1engthening permitted is that which extends a
common block beyond the last entity for that block declared
directly by any COMMON statement in the same program unit.

5.8.3.24

Information contained in Sections 5.5.2.4, 5.5.5.1 and this sec-
tion suffices to describe the possibilities of additional cases
of sharing of storage between array elements and entities of
common blocks. It is incorrect to cause, either directly or
indirectly, a single storage unit to contain more than one
element of the same array, or to cause consecutive array ele-
ments to have storage units that are not consecutive.

5.8.4 Type-Statements

A type-statement is used to override or conflrm implicit typing
and may specify dimension information.

.5.8.4b o

The appearance of a symbolic name in a type-statement speci-
fies the data type for that name for all appearances in the
program unlt.

5.8.4c

Subroutine names, common block names, program names,

and block data subprogram names cannot appear in a type-state-
ment. Symbolic names of constants, which appear in PARAMETER
statements, may appear in type-statements only in dimension
bound expressions and character length specifications.

5.8.44

If a generic function name (Table 5) appears in a type-state-
ment within a program unit, that name loses its generic pro-
perty in that program unit.

5.8.4.1 _INTEGER, INTEGER *2, REAL, DOUBLE PRECISION, COMPLEX,
LOGICAL, BIT, and ADDRESS TYPE-statements - INTEGER, INTEGER *2,
REAL, DOUBLE PRECISION, COMPLEX, LOGICAL, BIT, or ADDRESS type
statements are of the form:

typ v E,#?.

-
where: typ is INTEGER, INTEGER *2, REAL, DOUBLE PRECISION,
» COMPLEX, LOGICAL, or BIT, or ADDRESS

v is a variable name, an array name, a function
or function name, or an array declarator.

5.8.4.2 CHARACTER Txpe Statements - A CHARACTER type-statement
is of the form:

-46-

CHARACTER *len [,] nam [nam] ...
where: nam is of one of the forms:

*]len

1<

a *len (d)
v is a variable name or a function name
a is an array name
a(d) is an array declarator

_ len is the length (number of characters) of a charac-
~ ter variable, character array element, or char-
acter function.

5.8.4.2b
len is one of the following:

(1) An unsigned, nonzero, integer constant, except that
the symbollc name of a constant is not permltted
unless it is enclosed in parentheses. :

(2) An arithmetic expression enclosed in parentheses in
which all constants and variables are 1nteger enti-
‘ties. Variables must be dummy arguments or in a

- common block. Function and array element references
must not appear in the expre531on.

5.8.4.2c

A length len immediately following the word CHARACTER is the
length spec1f1catlon for each entity in that statement not
having its own length specification. A length specification im-
mediately following an entity is the length specification for
only that entity. Note that for an array, the length specified
is for each array element. If a length is not specified for

an entity, its length is one.

5.8.4.24

An entity declared in a CHARACTER statement must have a length
specification that is a constant expression unless that enti-
ty is a dummy argument and is a variable or an array. When

an entity has a len of (*) declared, that entity must be a
dummy argument, and the dummy argument assumes the length of
the associated actual argument. Note that lengths of asso-
ciated actual arguments are permitted to be different for
different executions of the referenced subprogram.

5.8.4.2e

The length specified for a character function must be the
same as the length of the character result of the function.

-47-

5.8.5 IMPLICIT Statement

An IMPLICIT statement is used to change or confirm the default
implicit integer and real typing. :

5.8.5b
An IMPLICIT statement is of the form:

IMPLICIT typ (af[aj...) [/typ (a a0 ...

where: typ is INTEGER, REAL, DOUBLE PRECISION, COMPLEX,
LOGICAL, CHARACTER *len , INTEGER *2, BIT,
or ADDRESS

is either a range of letters in alphabetical or-
der or a single letter. A range is denoted by the
first and last letters of the range separated by

a minus sign. Writing a range of letters a, - ap
has the same effect as writing the single létters
a through a,., inclusive, in alphabetical order.

o

len is the length of the character entities and is an
unsigned, nonzero, integer constant. If len is
not specified, the length has an implied value of
one.

5.8.5¢c

An IMPLICIT statement specifies a type for all variables, ar-
rays, function (except predefined functions), and function
entries that begin with any letter that appears in a range of
letters. IMPLICIT statements do not change the type of any
intrinsic functions listed in Table 34.

5.8.5d"

Type specification by an IMPLICIT statement may be overridden
for any particular variable, array, function, or function en-
try name by the appearance of that name in a type-statement.
An explicit type specification in a FUNCTION statement over-
rides an IMPLICIT statement for the name of that function sub-
program. '

5.8.5e -

Within the specification statements of a program unit, IMPLICIT
statements must precede all other specification statements
except PARAMETER statements. A program unit may contain any
number of IMPLICIT statements. ‘

5.8.5f _
The same letter may not appear or be included in a range of
letters more than once in the group of IMPLICIT statements in
any program unit.

~48-

5.8.6 PARAMETER Statement

A PARAMETER statement allows a constant to be given a symbolic
name.

5.8.6b
A PARAMETER statement is of the form:

PARAMETER n=c [,n=cj...

where: n is a symbolic name

c is a constant other than a Hollerith constant.
5.8.6c

Each symbolic name n is the name of a constant and becomes de-
fined to the value of the constant c that appears on the
right of the equals. Once such a symbolic name is defined,
that name may appear in that program unit in any subsequent
statements, except PARAMETER and FORMAT statements, whereever
a constant may appear and the effect is the same as if the
constant appeared there instead of the name. Such a name

may not appear in any position that does not allow a constant
to appear. The form of the constant in the PARAMETER state-
ment must be a form that is allowed to appear at the position
where the name of the constant appears. The symbolic name of
a constant may not appear as part of another constant, except
that the symbolic name of a real constant may appear as either
the real or the imaginary part of a complex constant.

5.8.6d :

A symbolic name in a PARAMETER statement may identify only
its corresponding constant in that program unit. Such a name
may not appear more than once in PARAMETER statements within
the same program unit and therefore may not be used as a con-
stant in a PARAMETER statement.

5.8.6e

The symbolic name of a constant assumes the type implied by
the form of its corresponding constant. The initial letter
of the name has no effect on its type. The symbolic name of
a character constant assumes the length attribute of its
character constant. Symbolic names of constants may not appear
in type-statements except in dimension bound expressions with-
in array declarators and in character length specifications.

5.8.7 EXTERNAL Statement

An EXTERNAL statement is used to identify symbolic names as
representing external procedures.

5.8.7b
An EXTERNAL statement is of the form:

EXTERNAL v [,v ...

-49-~

where: each v is an external procedure name or entry name.

5.8.7c

Appearance of a name in an EXTERNAL statement declars that
name to be an external procedure name. If an external pro-
cedure name or an entry name is an actual argument, it must
appear in an EXTERNAL statement in that program unit.

5.8.74

If an intrinsic function name (Table 3) or a statement func-
tion name appears in an EXTERNAL statement in a program unit,
that name becomes the name of some external procedure and that
intrinsic function or statement function is not available for
reference 1n that program unit.

5.8.7e .
Only one appearance of a symbolic name in all of the EXTERNAL
_statements of a program unit is permitted.

5.8.8 INTRINSIC Statement

An INTRINSIC statement is used to permlt intrinsic functions
as actual arguments.

5.8.8b
An intrinsic statement is of the form:

INTRINSIC v [,¥]-.-
where each v is an intrinsic function name (Table 34).

5.8.8c

If an intrinsic function is an actual argument, it must ap-
pear in an INTRINSIC statement in that program unit. The in-
trinsic functions for choosing the largest or smallest value
may not appear in an INTRINSIC statement. Note that a sym-
bolic name may not validly appear in both an EXTERNAL and an
INTRINSIC statement in any program unit.

5.8.8d .

If a generic function name (Table 5) appears in an INTRINSIC
statement in a program unit, that name must also be the name
of a specific intrinsic function which may then be used as an
actual argument. The appearance of a generic function name
in an INTRINSIC statement does not cause that name to lose
its generic property.

5.8.8e

Only one appearance of a symbolic name in all of the INTRINSIC
statements of a program unit is permitted.

50

5.8.9 SAVE Statement

A SAVE statement is used to cause entities and named common.
blocks to remain defined following the execution of a RETURN
or END statement in that program unit.

5.8.9b
A SAVE statement is of the form:

SAVE a ,a ...

where a is a named common block name preceded and followed
by a slash, a variable name, or an array name. Re-
dundant appearances of an item are permitted.

5.8.9¢c) :
Dummy arguments, procedure names, and entities in common may
not appear in a SAVE statement. '

5.8.94 v
A SAVE statement without a list is treated as though it con-
tained the names of all allowable items in that program unit.

5.8.9e

The appearance of a common block name in a SAVE statement has :
the effect of specifying all the entities in that common block.

No entities appearing in a SAVE statement become undefined

as the result of the execution of a RETURN or END statement
in the program unit where the SAVE statement appears.

5.8.10 STACK Statement

A STACK statement is used to declare a push down stack. It
gives the stack its type and maximum number of elements that
it can hold. The form of the STACK statement is:

typ STACK*n nam Znaﬁj...
where typ is:

INTEGER , INTEGER* 2 ,REAL ,DOUBLE PRECISION,COMPLEX,ADDRESS,
LOGICAL,CHARACTER[flenj,or BIT

n is the maximum number of elements the stack will hold

nam is the stack variable being declared.

-51-

5.8.10b
n is one of the following:

(1) An unsigned, nonzero, 1nteger constant, except that
the symbolic name of a constant is not permitted unless
it is enclosed in parentheses.

(2) An arithmetic expression enclosed in parentheses in
which all constants and variables are integer entities.
Variables must be dummy arguments or in a common block.
Function and array element references must not appear in
the expre551on.

; (3) An asterisk in parentheses, (*) which means that the
" stack name (s) are dummy arguments and they assume the
number of elements of the associated actual arguments.

5.8.10.1

Stacks that have not been declared as dummy arguments may
appear in EQUIVALENCE and COMMON statements. Stacks which

are declared in EQUIVALENCE statements should have the same
number of elements. Character stacks can only be EQUIVALENCE'd
to other character stacks.

DATA STATEMENT

A DATA statement is used to provide initial values for vari-
ables, array, and array elements. A DATA statement is non-
executable and may appear in a program unit anywhere after
the specification statements (if any).

5.9b
A DATA statement is of the form:

DATA nlist / clist/ , nlist / clist/ ...

where: nlist is of the form
a Eal .o

where: a is the name of a variable, array, array
element, or an implied-DO list.

clist is of the form:
con [,con] ...
—_— =

where: con is either a constant or a constant pre-

-51A-~

ceded by r*. When the form r* appears before
a constant, it indicates r successive appearan-
ces of the constant. ;

r is a nonzero, unsigned, integer constant.

5.9c :
Dummy arguments, function and function entry names, character
‘substring names, and entities in blank common (including en-
tities associated with an entity in blank common) may not ap-
pear in the list nlist. Entities in a named common block

may appear in the list nlist within a block data subprogram
only.

5.9d4

There must be the same number of items specified by the list
nlist and the list clist. There is a one-to-one correspondence
between the nlist items and the constants specified by clist
such that the first item of nlist corresponds to the first con-
stant of clist, etc. By this correspondence, the initial

value is established and the entity is initially defined. 1In
an array name without a subscript is in the list, there must

be one constant for each element of that array. The ordering
of array elements is sequential according to array element
subscript value.

5.9e

The type of the nlist entity and the type of the correspondlng
clist constant must agree when either is of type character,
complex, or logical. When the nlist entity is of type inte-
ger, real, or double precision, the corresponding clist con-
stant must also be of the type integer, real, or double pre-
cision; if necessary, the clist constant is converted to the
type of the nlist entity according to the rules for arith-
metic a551gnment statements. Note, however, that when the
clist constant is a Hollerith constant, the nlist entity may -
be of any type except character.

5.9f
Any variable or array element may be initially defined except
for:

(l) an entity that is a dummy argument, an entity in
blank common, or an entity a55001ated with an entlty
in blank common, or

(2) a variable in a function subprogram whose name is
also the name of that function or an entry in that
function.

5.99g

An entity may not be initially defined more than once in an
executable program. Only one entity of a set of associated
entities may be initially defined explicitly in the same
executable program. Note that in an executable program, a

-52-

storage unit or character storage unit may not have its value
initially defined more than once.

5.%h

All 1n1t1ally deflned entities are defined when an executable
program begins execution. All entities not initially defined
are undefined at the beginning of execution of an executable
program.

5.9.1 Implied-DO in DATA Statement - An implied-DO list
" in a DATA statement is of the form:

(nlist, }_ = El l_n_l_z l¥_n_3)

where: nlist is a list containing array elements and im-
~ plied-DO lists

i is the name of an integer variable, called
the implied-DO control variable

m, ,m,,m, are either constants or the control variable
, , of an implied-DO list that has this implied-
DO list within its range.

5.9.1b

The range of an implied-DO list is the 1mmed1ately precedlng
list nlist. An interation count is calculated from m;, My,
and m3 exactly as the DO- loop. The iteration count

must be positive. The appearance of a control variable name
in a DATA statement does not cause definition or undefinition
of a variable of the same name in the same program unit.

5.9.1c

Any subscript expression and implied-DO parameter must con-
sist of integer constants and implied-DO control variables
only. The value of any control variable appearing within a
subscript expression or as an implied-DO parameter in an nlist
must have a constant value specified within that list. sub-
script expressions must not contain exponentiation or function
references.

5.9.2 Character Constants in DATA Statements

An entity in the list nlist that corresponds to a character
constant must be of type character. If the length of the
character entity in the list nlist is greater than the length
of its corresponding character constant, the additional right-
most characters in the entity are initialized with blank char-
acters. If the length of the character entity in the list
nlist is less than the length of its corresponding‘character
constant, the additional rightmost characters in the constant
are ignored. Note that initialization of a character entity
causes definition of all of the characters in that entity, and
that each character constant does not initialize more than

one variable or array element.

-53-

5.9.3 Hollerith Constants in DATA Statements

A Hollerlth constant may appear in the list clist, and the
corresponding entity in the list nlist may be of any type
except complex or character.

5.9.3b

If the entity is of type integer, real, or logical, then the
number of characters n in the correspondlng Hollerith constant
must be less than or equal to 4. If n is less than 4, the
entity is initialized with the n Hollerith characters exten-
ded on the right with 4-n blank characters. If the entity

is of type double precision, then n must be less than or equal
to 8. If n is less than 8, the double precision entity is in-
itialized with the n Hollerlth characters extended on the
right with 8-n blank characters.

5.9.3c

Note that each Hollerith constant does not initialize more
than one variable or array element.

-54-

5.10 Assignment'Statements

There are five kinds of assignment statements

(1)
(2)
(3)
(4)
(5)

Arithmetié assignment statement

Logical assignment statement

Statement label assignment (ASSIGN) sﬁatement
Charécter assignment statement

Address assignment statement

Completion of execution of an arithmetic, a logical, a ,
character, or an address assignment statement causes defini-
tion of an entity.

5.10.1 Arithmetic Assignment Statement

An arithmetic assignment statement is of the form:

v=e

where: v is a variable name or an array element name of

type integer, real, double precision, or complex.

‘e 1is an arithmetic expression.

5.10.1b

Execution of this statement causes the evaluation of the
expression e and the assignment and definition of v as
established by the rules in Table 2.

5.10.1c

Table 2

Rules for Arithmetic Assignment and Conversion of e to v

Type of v

Integer

Real

Double

Complex

5.10.1c

Type of e

Integer
Real
Double
complex

Integer
Real
Double
Complex
Integer
Real
Double
Complex
Integer
Real
Double

Complex

Notes for Table 2:

Assignment Rule

A551gn
Fix and a551gn

Fix and assign
Fix real part and assign

Float and assign
Assign

Real assign -
Assign real part

DP float and assign

DP float and assign

Assign

DP float real part and assign

Float and assign real part;
imaginary part =0
Assign real part;
imaginary part = 0
Real assign real part;
imaginary part = 0
Assign

(1) Double means double precision.

(2) A551gn means transmit the resulting value, without

change, to the entity.

(3) Real a551gn means transmit to the entity as much

precision of the most significant part of the resultlng
value as real datum can contain.

(4) Fix means truncate any fractional part of the result and
convert that value to an integer datum.

(5) Float means convert the value to a real datum.

(6) DP float means convert the value to a double precision
datum, retaining in the process as much of the precision
of the value as a double precision datum can contain.

(851

5.10.2 Ldgical Assignment Statement

A logical assignment statement is of the form:

v=e
where: v is the name of a logical variable or logical
array element ‘

e is a logical expression

5.10.2b

Execution of this statement causes the evaluation of the.
logical expression e and the assignment and definition of
v with the value of e. Note that e must have a value of

either true or false.

5.10.3 Statement Label Assignment (ASSIGN) Statement

A statement label assignment statement is of the form:
ASSIGN s TO i

where: s is a statement label

i is an integer variable name
5.10.3b ‘

~ Execution of this statement causes the statement label to be
assigned to the integer variable. The statement label must
be the label of a statement in the same program unit in
which the ASSIGN statement appears. The statement label
must be the label of an executable statement or a FORMAT
statement. If the label of an executable statement has been
assigned to an integer variable, subsequent execution in the
same program unit of any assigned GO TO statement that con-
tains the same integer variable will cause the statement
identified by the assigned statement label to be executed
next, provided there has been no intervening definition or
undefinition of the variable. :

5.10.3c

If the label of a FORMAT statement has been assigned to an
integer variable, subsequent execution in the same program
unit of any formatted input/output statement that contains
the same integer variable as a format identifier will use
the FORMAT statement identified by the assigned statement
label, provided there has been no intervening definition or
undefinition of the variable.

5.10.3d

After an integer variable has been assigned a statement
label, that integer variable may not be referenced in any
statement other than an assigned GO TO statement or as a

L7

format identifier in an input/output statement until it has
been defined to an integer value. It may be subsequently
assigned to the same or a different statement label.

5.10.3e

Completion of executlon of an ASSIGN statement causes.
undefinition of the integer variable as an integer. Any
subsequent definition of the variable as an integer removes
the previous assignment to a statement label.

5.10.4 Character Assignment Statement

A charactér'assignment statement is of the for-:
y=e

where: v is the name of a character variable, character
array element, or character substring

e 1is an expression of type character

5.10.4b
Execution of this statement causes the evaluation of the
expression e and the assignment and definition of v with the
value of e. The character positions referenced in e may not
be the character positions belng defined in v. All of the
character positions referenced in e must be defined. v and
e may have different length attributes. If the length of v
is greater than the length of e, the effect is as though e
is extended to the right with blank characters until it is
the same length as v and then assigned. If the length of v
is less than the length of e, the effect is as though e is™
truncated from the right until it is the same length as \4
and then assigned. :

5.10.4c

If v is a substring, only the character positions spec1f1ed
are defined. The status of character positions not specified
by the substring is unaffected.

5,10.5 Address Assignment Statements

An address assignment statement is of the form:
v =e

where v is the name of an address variable or address array
element

e is an expression of type address
5.10.5b

An address expression is one that contains only address constants,
address mode variables, integer constants, and integer variables.

Execution of an address assignment statement causes the
evaluation of the address expression e and the assignment and
definition of v with the value of e.

5.10.5c

Associated with an address variable is an inverse value operation @
which gives the value that the address Varlable points to. For
example, ‘

ADDRESS A
A=A'T"
J = @A

J will be assigned the value of the argument whose address is in
A, in this case the value of I.

5.11 CONTROL STATEMENTS

Control statements may be used to control the execution
sequence within a program unit.

5.11b v
There are ten control statements:

(1) Unconditional GO TO Statement
(2) Assigned GO TO Statement
- (3) Cdmpmted GO TO Statement
(4) Arithmetic IF Statement
(5) Logical IF Statement
(6) DO Statement
(7) CONTINUE Statement
(8) STOP Statement
(9) PAUSE:Statement
(10) END Statement

5.11.1 Unconditional GO TO Statement

An unconditional GO TO statement is of the form:
GO TO s

where s is a statement label of an executable statement within
the same program unit in which the GO TO statement appears.

5.11.1b
Execution of this statement causes the statement identified
by the statement label to be executed next.

5.11.2 Assigned GO TO Statement

An assigned GO TO statement is one of the forms:

GO TO i
Ggoro ic(,) (sl,s]...)

where: i . is an integer variable name

"is a statement label of an executable statement
within the same program unit in which the GO TO

statement appears. The same statement label may
appear more than once in the GO TO statement..

110]

5.11.2b

At the time of execution of an assigned GO TO statement, the
current value of i must have been assigned by the prior
execution of an ASSIGN statement to a statement label of an
executable statement; the execution of the assigned GO TO
statement causes the statement identified by that statement
label to be executed next. The last definition of the
variable in an assigned GO TO statement must have occurred
in the same program unit as the assigned GO TO statement.
If the form with the parenthesized list is used, then the
statement label assigned to i must be one of the statement
labels in the list. - :

5.11.3 Computed GO TO Statement

A computed GO TO statement is of the form:
Go T (s [,s1...) L,1 1

where: i is an integer expression

is a statement label of an executable statement
within the same program unit in which the GO TO
statement appears. The same statement label may
 appear more than once in the GO TO statement.

5.11.3b :
Execution of this statement causes the statement identified
by the jth statement label to be executed next, where j is
the integer value of i at the time of the execution and
1<j<n, where n is the number of statement labels within the
parentheses. If j<1 or j>n, then execution proceeds as
though this statement were a CONTINUE statement.

5.11.4 Arithmetic IF Statement
An arithmetic IF statement is of the form:
IF (e) s3r Spr 83

 where: e is any arithmetic expression of type integer,
real, or double precision

S1 1Sy and s3 are statement labels of executable
statements within the same program unit. The
same statement label may appear more than once.

5.11.4b .
The arithmetic IF statement is a three-way branch. Execution
of this statement causes evaluation of the expression e
following which the statement identified by the statement label
S1, Sp,-Or S, is executed next as the value of e is less

than zero, egual to zero, or greater than zero, respectlvely.

5.11.5 Logical IF Statement

A logical IF statement is of the form:
IF (e) st
where: e 1is a loQical expression

st is any executable statement except a DO statement
or another logical IF statement

Upon execution of this statement, the logical expression e
is evaluated. If the value of e is false, statement st is
executed as though it were a CONTINUE statement. If the
value of e is true, statement st is executed.

5.11.6 DO Statement

A DO statement is used to define a loop, called a DO-loop.

5.11.6b
A DO statement is of the form:

Do s [,11=m, my, [,m3]

where: s is the statement label of an executable state-
ment. This statement, called the terminal
statement of the DO-loop, must physically follow
and be in the same program unit as the DO
statement.

,called the control variable, is an integer,
real, or double precision variable name.

||.a.‘

m; is called the initial parameter; mp is called
the terminal parameter; and m3 is called the
incrementation parameter. m;, My, and m3 are
each an integer, real, or double pre0151on
expression. If m3 does not explicitly appear,

a value of one is implied for the imcrementation
parameter.

5.11.6¢c -

The terminal statement of a DO-loop may not be an uncondi-
tional GO TO, assigned GO TO, arithmetic IF, RETURN, STOP,
END, or DO statement. If the terminal statement of a DO~
loop is a logical IF, it may contain any executable statement
except a DO statement, another logical IF statement,:or

END statement.

5.11.6.1 Range of a DO-1oop

The range of a DO-loop is the set of executable statements
from and including the first executable statement following
the DO statement that defines the DO-loop, to and including
the terminal statement of the DO-loop.

5.11.6.1b

If a DO sStatement appears within the range of a DO-loop, the
range of the DO-loop defined by that DO statement must be '
within the range of the outer DO-loop. Note that the defini-
tion of range of a DO-loop permits both DO-loops to share

a terminal statement. -

5.11.6.2 . Active and Inactive Do-loops

A DO-loop is either active or inactive. Initially inactive,
it becomes active only when the execution of its DO state-
ment defines a nonzero iteration count (5.11.6.3).

5.11.6.2b
Once active, the DO-loop becomes inactive only

(1) when its iteration control (5.11.6.4) decrements its
iteration count to zero, ;

(2) when the execution of a RETURN statement in its
program unit or a STOP statement in its executable
program occurs,

(3) when it is in the range of a DO-loop that becomes
.inactive, or

(4) when it is in the range of a DO-loop whose DO
statement is executed.

5.11.6.2¢ g
When a DO-loop becomes inactive, its control variable retains
its last defined value. :

5.11.6.3 Executing a DO Statement

The effect of executing a DO statement is as follows:

(1) The DO statement parameters are evaluated. If
necessary, they are converted to the type of the
control variable according to the rules for arithmetic

assignment statements (Table 2). The value of mjy
must not be zero. If conversion of m3 is necessary,
its value after conversion must not be zero.

'(2).AThe control variable is defined and has the value
of the initial parameter.

(3) The iteration count is defined and is the largest
integer value that does not exceed the value of the
expression

(my - m)/m3 + 1

If the value of the‘expression is less than zero,
the iteration count is zero. Note that the iteration
count is zero whenever: :

m; > my and m3 > 0, or
m) < my and my < 0.

(4) If the iteration count is not zero, then the DO-
loop becomes active. This is followed by the normal
execution of the statements in the range of the DO-
loop until the terminal statement is reached.

Except by the iteration control described in 5.11.6.4,
the control variable of this DO-loop may not be
defined in the range of the DO-loop.

5.11.6.3b

If the iteration count is zero, then the DO-loop becomes
inactive and execution continues with the processing of the
terminal statement as described below.

5.11.6.4 Processing the Terminal Statement of a DO-loop

The processing of the terminal statement of a DO-loop is as
follows:

(1) If any DO-loop that has this statement as its
terminal statement is inactive, the terminal state-
ment is executed as though it were a CONTINUE state-
ment. If execution of the terminal statement results
in a transfer of control, then no additional action
occurs. Otherwise, the iteration control processing
follows. ' - -

(2) If any DO-loop that has this statement as its
terminal statement is active, the iteration control
of the active DO-loop whose DO statement has this
terminal statement and was most recently executed
is selected for processing. Iteration control
begins with the algebraic addition of the value of
ms defined by execution of the DO statement. The
iteration count is decremented by one. If this DO-
loop is still active, normal execution of the
statements in the range of the DO-loop follows.

assignment statements (Table 2). The value of my
must not be zero. If conversion of m3 is necessary,
its value after conversion must not be zero.

(2)A'The control variable is defined and has the value
of the initial parameter.

(3) The iteration count is defined and is the largest
integer value that does not exceed the value of the
expression :

(mp - mp)/m3 + 1

If the value of the expression is less than'zero,
the iteration count is zero. Note that the iteration
count is zero whenever: . ‘

m; > my and m3 > 0, or
m; < mp and my < 0.

(4) If the iteration count is not zero, then the DO-
loop becomes active. This is followed by the normal
execution of the statements in the range of the DO-
loop until the terminal statement is reached.

Except by the iteration control described in 5.11.6.4,
the control variable of this DO-loop may not be
deflned in the range of the DO-loop.

5.11.6.3b

If the iteration count is zero, then the DO-loop becocmes
inactive and execution continues with the processing of the
terminal statement as described below.

5.11.6.4 Processing the Terminal Statement of a DO-loop

The processing of the terminal statement of a DO-loop is as
follows: '

(1) If any DO-loop that has this statement as its
terminal statement is inactive, the terminal state-
ment is executed as though it were a CONTINUE state-
ment. If execution of the terminal statement results
in a transfer of control, then no additional action
occurs. Otherwise, the iteration control processing
follows. ’ o

(2) If any DO-loop that has this statement as its
terminal statement is active, the iteration control
of the active DO-loop whose DO statement has -this
terminal statement and was most recently executed
is selected for processing. Iteration control
begins with the algebraic addition of the value of
m3 defined by execution of the DO statement. The
iteration count is decremented by one. If this DO-
loop is still active, normal execution of the ’
statements in the range of the DO-loop follows.

(3) If the DO-loop was or becomes inactive, and all
other DO-loops sharing this terminal statement are
. inactive, then control concludes. Normal execution
of the statement following the terminal statement
occurs next. Otherwise, iteration control continues
- by repeating step 2. ' ‘

5.11.6.5 Transfer into the Range of a DO-loop

Transfer of control into the range of an inactive DO-loop is
not permitted. Transfer of control into the range of an
active DO-loop is permitted only if the DO-loop control
variable has not been subsequently defined by means other
than the incrementation control described in 5.11.6.4.

5.11.7 CONTINUE Statement

A CONTINUE étatement is of the form:
~ CONTINUE

Execution of this statement causes continuation of the
normal execution sequence. :

5.11.8 STOP.Statement

A STOP statement is of the form:
STOP [n]

where n is a decimal digit string of not more than five
digits.

5.11.8b ,

Execution of this statement causes termination of execution ,
- of the executable program. At the time of termination, the
digit string is accessible. - '

5.11.9 PAUSE Statement

A PAUSE statement is of the form:
PAUSE [n]

‘where n is a decimal digit string of not more than five
digits or a character constant. :

5.11.9b

Execution of this statement causes a cessation of execution
of the executable program. Execution must be resumable. At
the time of cessation of execution, the digit string or
character string is accessible. Resumption of execution is
not under control of the program. If execution is resumed
without otherwise changing the state of the processor, the
normal execution sequence is continued.

5.12

5.11.10 - END Statement

An END'statement physically terminates a program unit and
may have the effect of a STOP or RETURN statement.

5.11.10b
An END statement is of the form:

END

5.11.10c.
An END statement may not be labeled and it may not be

continued. Columns 1 through 6 of the line on which the END
statement is written must all con;ain blank characters.

5.11.104
The END statement indicates to the processor the end of the
written description of a program unit. Every program

unit must physically terminate with an END statement.

5.11.10e | |
An END statement is executable. Execution of an END state-

"ment in a main program has the same effect as executing a

STOP statement (5.11.8). Execution of an END statement in a
subprogram has the same effect as executing a RETURN state-
ment. o ' :

" INPUT/OUTPUT STATEMENTS

" Input statements provide the means of transférring data from

external media to internal storage. This process is called
reading. Output statements provide the means of transferring
data from internal storage to external media. This process
is called writing. Some statements cause conversion of the
data. ‘ o '

5.12.b '
In addition to the statements that transfer data, there are
auxiliary input/output statements to manipulate the external
medium, or to inquire about or describe the properties of:
the external medium. ‘ ’
5.12.c o .
In their general form, the input/output statements that
transfer data contain three categories of information:

(1) Direction of transfer

(2) Control information that includes:

A reference to the source or destination of the
data to be transferred.

Optional specification of conversion processes.

Optional directives for change of execution sequence

3

on the occurrence of certain events.

(3) A list specifying the data to be transferred.
An external medium is described in terms 0of records and :
files. It is referenced by means of a unit. No physical
structures or specific devices are implied. ~
5.12.1 Records |
A record is a basic conéept.‘ For example, a punched card is
usually considered to be a record. However, a record does
not necessarily correspond to a phy51ca1 entlty. There
are four klnds of records' ~

(1) formatted

(2) unformatted

(3) free-field

(4) endfile

5.12.1. 1 Formatted Records

A formatted record consists of a sequence of characters that
are capable of representatlon in .the processor. The length
of a formatted record is measured in characters. Formatted

records are read and written only by formatted 1nput/output

statements.-

5 12.1. 2 Unformatted Records

"An unformatted record consists of a sequence of values in a

processor-dependent form. An unformatted record may. contain
both character and noncharacter data. The length of an

unformatted record is measured in storage units. The length

L of an unformatted record in terms of storage units is
‘given as:

L'= n + sum_. over At (k_sub i +’g.—'l) /‘g]

where: n - is the number of noncharacter storage unlts in
~the record

k _sub_i is the number of characters in the i-th set
of contlguous character items in the record

g is the maximum number of characters that can be
stored in a single storage unit at one time

[1 is the greatest-integer functlon. s

Unformatted records are read and written only by unformatted

input/output statements.

. 4
i
5

5.12.1.3 Free-field Records

A free-field record consists of a series of values formed as

" described in 5.12.10 from characters capable of representation
in the processor. The length of a free-field record is
measured in values; the number of values in the record is

not necessarily known to the processor. Free-field records
are read and written only by free-field input/output state-
ments. The values which comprise a single free-field record
are read by one or more successive free-field input state-
ments and are written by one or more successive free-field
output statements.

' 5.12.1.4 Endfile Records

An endfile record is written by an ENDFILE statement. An
endfile record does not have a length property.

5.12.2 Files

A file is a set of zero, one, or more récords. A record is a
member of exactly one file. There are three kinds of files:

(1) sequential
- (2) direct access
(3) storage |

Sequential and direct access files are collectively referred
to as external files.

5.12.2.1 File Existence

Any file that is connected at the beginning of execution of
an executable program, or is capable of being connected after
the beginning of execution, is said to exist for that program.
A file may exist and contain no records; for example, a new
file not yet written.

5.12.2.1b ,

To create a file means to cause a file to exist that did not
previously exist. To delete a file means to terminate the
existence of the file. '

5.12.2.1c o

Certain input/output statements, such as READ and WRITE, may

refer only to files that exist. Other input/output state-

ments such as INQUIRE, OPEN, and CLOSE, may refer to files
that do not exist. :

5.12.2.2 File Names

A file may have a name; a file that has a name is called a
named file. The name of a named file is a character string.
The set of allowable names is processor dependent. A pro-
cessor need not permit named files.

5.12.2.3 Sequential Files

A nonempty sequential file has the following properties:

(1) Reading and writing of records is accomplished only
by sequential input/output statements or free field
input/output statements.

(2) The records of the file exist as a totally ordered
set. There is a first record and a last record. The
order of the records is the order in which they were
written.

(3) The records of the file may be either formatted,
unformatted, free-field, or any combination thereof.
The last record in the file may be an endfile record.
Records may be of different lengths in the same file.

(4) The file has a position property, from which are
derived the related concepts of next record, pre-
ceding record, current record, and initial point.
Certain circumstances can cause the position of
the file to become indeterminate.

(5) If the file is positioned between the ith record
and the ith+l record, the ith record is the preceding
record and the ith+l record is the next record and
there is no current record.

(6) A current record exists only when the current
position of the file is within a record rather than
between two records. This condition is caused only
by free-field input/output statements. If the current
record is the ith record, then the ith+l record, if
1t ex1sts, is the next record For 1>l the ith-1
record is the preceding record. Note that, if a file
is positioned so that there is a current record, that
record must be a free-field record.

(7) The initial point of the file is that unique point
where the next record is the first record of the
file. When the file is positioned at its initial
point, there is no preceding record in the file and
no current record.

(8) When the file is positioned after the last record,
there is no current record and no next record in
the file. The last record is the preceding record.

5.12.2.3b

A sequential file that contains no records is empty. An
empty file has no preceding record, no current record, and
no next record.

5.12.2.3.1 Sequences of Sequential Files

A sequence of sequential files has the following properties:

(1) The files exist as a totally ordered set. There is
a first file and a last file. The order of the
files is the order in which they were written.

(2) The files are separated by endfile records. An
endfile record is part of the file that it terminates.
The last file need not be terminated by an endfile
record.

(3) The sequence has a position property, from which
are derived the related concepts of next file,
preceding file, current file, and initial point.

(4) If the sequence is positioned between the ith file
and the ith+l file, the ith file is the precedlng
file, the ith+l file is the next file and there is
no current file. This position is the initial

~point of the ith+l file. The preceding record is
‘the last record of the ith file.

(5) If the sequence is positioned between two records
of a file, or within a record of a file, that file
is the current file. If the current file is the ith
file, then the ith+l file, if it exists, is the next
file. For i>1l, the ith-1 file is the preceding file.
(6) If the sequence is positioned at the initial point
of the first file, there is no preceding file, and
no current file. '

(7) When the sequence is positioned after the last file,
‘there is no current file and no next file.

5.12.2.4 Direct Access Files

A direct access file has the following properties:

(1) Reading and writing of records is accomplished only
by direct access input/output statements.

(2) The records of the file are either all formatted or
all unformatted records. The file may not contain
free-field records, endfile records, or a mixture
of formatted and unformatted records.

(3)
(4)

(5)

(6)

(7)

‘Every record in the file has the same length.

Each record in the file is uniquely identified by a
positive integer called the record number. The
value of the record number of a record is estab-
lished when the record is written. Once established,
the record number of a record may never be changed,

_ nor may a record be removed from the file.

Records need not be read or written in the order of
their record numbers. Any record may be written
into the file while it is connected (5.12.3) to a
unit, unless the file was opened with the READ ONLY
specifier (5.12.11.1). Any record may be read from
the file while it is connected to a unit, provided

the record has been written subsequent to the

creation of the file. For example, it is permissible
to write record 3, even though records 1 and 2 have
not been written.

The file optionally may have a maximum-record-number
property that is established when the file is created.
Once established, the presence or absence of the
maximum-record-number property may not be changed.

If the file has the maximum-record-number property,
the value of the maximum record number is estab-
lished, and may only be established, when the file

is created. No record in the file may have a

record number that is greater than the maximum record
number. If a file does not have the maximum-record-
number property, then the records in the file may
have any record number not exceeding some processor-
dependent upper bound. ‘

5.12.2.5 Storage Files

A storage file is an entity of type character. A record of
a storage file is a character variable or a character array

element.

When used for input/output, these entities are

called records and the collection of records is called a
storage file.

5.12.2.5b
A storage file has the following properties:

(1)

(2)
(3)

Reading and writing records is accomplished only by
formatted sequential input/output statements.

The file contains only formatted records.

The file is a character variable, character array

element, or character array. Note that a character

substring is not permitted.

(4) If the file is a character variable or a character array element,
it consists of a single record whose length is the same as the
length of the variable or array element. If the file is a character
array, it is treated as a sequence of character array elements.
Each array element is a record in the file. The records exist
as a totally ordered set and the ordering of the records in the
file is the same as the ordering of the array elements in the array.
Every record of the file has the same length, which is the length of
an array element in the array. :

(5) The 'variable or array element that is the record in the storage
file becomes defined when that record is written.

(6) Only records that correspond to a variable or array element that
is defined may be read by formatted sequential input statements.

(7) The character entity used as a record of a storage file may be
defined (or undefined) by means other than a formatted sequential
output statement, For example, the variable or array element may
be defined by a character assignment statement,

5.12.3 Units

A uitisa ﬁlééné of referring to one of the following:
M a sequential file | |
(2) a direct access file
(3) a storage file

5.12,3b

A unit has a -property of being connected or not connected. If connected,

it refers to one of the above kinds of files, A unit may become connected

. by preconnection or by the execution of an OPEN statement. The property
of connection is symmetric, i.e., if a unit is connected to a file, then the
file is connected to the unit. '

5.12,3c '
Preconnection means that the unit is connected to a file at the beginning of
execution of the executable program and therefore may be referenced by
input/output statements without the prior execution of an OPEN statement.

5.12,3d

A unit must not be connected to more than one file at the same time and a
file must not be connected to more than one unit at the same time. How-
ever, to change the status of a unit and to connect a unit to a different

file, all input/output statements except OPEN, CLOSE, and INQUIRE must
identify a unit that is connected to a file.

T

5.12,. 3.1 Kih-ds of Units

There are tWo kinds of ﬁnits:
(1) External
(2) Intermal
5.12,3b
An external unit is used to refer to a sequential ﬁle or a d1rect access
file. An internal unit is used to refer to a storage file. An internal unit

is always connected,

5.12, 3.2 Unit Identifiers

In the following descriptions of input/output statements, u identifies a unit.
The unit identifier u for an external unit is called an external unit identifier
and is an integer, real, or double precision expression that has a zero or
positive value when converted to an integer according to the rules for
arithmetic assignment statements. One and only one unit is identified by
each integer value within an executable program.

5.12.3.2b

The unit identifier for a storage file is called an internal unit identifier and

is the symbolic name of a character variable, a character array, or a character
array element. Note that a character substring is not permitted.

5.12,4 Format Identifiers-

In the following descriptions of input/ outpi;t statements, f identifies a format ,
specification (Section 5.13). The format identifier f may be any one of the
following: :

(1) The statement label of a FORMAT statement in the same program. umt
as the input/output statement. :

(2) Aninteger variable name that has been assigned the statement label
of a FORMAT statement in the same program unit as the 1nput/output

statement

(3) A character expression or character array name (5.13.1. 1). Note that
this includes a character constant whose value is a format specification,

(4) An array name not of character type (5 13.1. 3).

5,12.5 Control Information SpGCIfleI‘S

The control information given in each input/output statement consists of a list
of positional or keyword control information specifiers. Except for the positional

forms of the unit and format specifiers, all specifiers are keyword speci-
fiers and may appear in any order. Note that a list that includes keyword
specifiers is always enclosed in parentheses.

5.12,5.1 Unit and Format Specifiers

In the folIowing descriptions of input/output statements, unt identifies a unit
specifier. unt is of one of the forms:

u (positional)
UNIT=u (keyword)
Where u is a unit identifier.
5.12,5.1b. ,
If u is an external unit identifier, unt is referred to as an external umnit
specifier. If u is an internal unit identifier, unt is referred to as an internal

unit specifier,

5.12.5.1c
A format specifier is identified by fmt. fmt is of one of the forms:

1 (positional)
FMT=f (keyword)

where f is a format identifier.

5.12.5.1.1 Useof Positional Form

If the positional form u of the unit specifier appears in an input/output statement,
it must appear as the first specifier in that statement, If the positional forms

of both the unit and format specifiers appear in the same input/output state-
ment, the positional form u must appear as the first specifier and the positional
form f must appear as the second specifier.

5.12.5.1. 2. Use of Keyword Form

If both the unit and format specifiers appear in an input/output statement and
the keyword form UNIT=u is used, then the keyword form FMT=f must also
be used. In this case, the unit and format specifiers may appear in any order
among the other keyword specifiers.

5.12,5.2 Error Specifier

An error specifier is of the form:

ERR =8

where s is the label of an executable statement that appears in the same program
unit as the error specifier.

5.12.5.2b .

If an input/output statement contains an error specifier and if the processdr en-
counters an error condition during the execution of that statement, then the
execution of that input/output statement terminates and execution continues

with the statement labeled s. The position of the unit specified in the input/
output statement, if it is connected to a sequential file, becomes indeterminate.
If the error condition occurs during execution of an input statement, the

entities specified by the input list become undefined. If an input statement
defines the value of a character or Hollerith format field descrlptor, that value
becomes undefined.

5.12.5.2¢

If an error condition occurs during execution of an input/output statement that
does not contain an error specifier, execution of the executable program is
terminated.

5.12,5.3 End-of-file Specifier

An end-of-file specifier is of the form:
~END=s

where s is the label of an executable statement that appears in the same prog'ram
unit as the end—of—flle specifier.

5.12,5.3b :

If an input statement contains an end-of-file specifier and if the processor
encounters an end-of-file condition during the execution of that statement,
_then execution of that input statement terminates, the entities specified by
the input list become undefined, and execution continues with the statement
labeled s. '

5.12.5.3¢c

Execution of an executable program is terminated when an end-of-file condi-
tion is encountered during execution of an input statement that does not
contain an end-of-file specifier. '

5.12.5.3d
An end-of-file condition exists if either of the following events occurs:

(1) An endfile record is encountered during the reading of sequential
formatted records, sequential unformatted records, or sequential
free-field records. In this case, the file referenced by the input
statement is positioned so that the endfile record is the preceding
record before execution continues with the statement labeled s.

(2) An attempt is made to read a record beyond the end of a storage
file.

5.12.6 Input/Output Lists

An input/output list specifies the entities whose values are transferred by
an input/output statement, ‘

5,12, 6b
An input/output listis a list of list items or implied-DO lists.

5,12.6.1 Input List Items
In an input Statement, a list item must be one of the foliowing:
(1) a variable name
(2) an array element name
(3) a character substring name
(4) an array name
(5) an array block item
5.12.6.2 Output
In an output sfatement, a list item must be one of the following:
(1) an expression other than a Hollerith constant
(2) an array name
(3) an array block item
5.12.6.3
When an array name appears as a list item, it is treated as if all of the
elements of the array were specified in the order given by array element
o;'dering.

5.12,6.1.1 Array Block Items

An array block item is of one of the forms:

8 8y

T

&

where 2] and a5 are array element names within the same array. The sub-
script value of a; must not exceed the subscript value of ag

5.,12,6.1.1b

When an array block item appears as a list item, it is treated as if all of

the elements of the array beginning with a; and ending with a, were specified in
the order given by array element ordering. If aj is omitted, the sequence begins
with the first element of the array ramed in a5. If ag is omitted, the sequence
ends with the last element of the array named in a]. During the execution of an
input/output statement, the subscript values of both aj and a, are computed by
the processor before any transmission of values occurs between the array block
and the input/output unit,

5.12.6.2 Implied-DO Lists

An implied-DO list is of the form:

(dlist, i =mg, mp [, m3])

where: dlist is an input/output list
i, mj, mg, and mg are as specified for the DO statement.
5.12.6.2b

The range of an implied-DO list is the set of items in the list dlist. Note that
dlist may contain implied-DO lists. The iteration count and the values of the
control variable i are established from mj, m,, and mg exactly as for a DO-
loop. In input statements, the control variable i may appear within dlist only
in subscript expressions. When an implied-DO Tist appears in an mput/output
list, itis treated as if dlist were specified once for each iteration of the im-
plied-DO list.

5.12.7 Execution of Input/Output Statements

The entities specified by the input/output list are transferred in the order
of the list items.

5.12.7.1 Execution of Input Statements

Execution of an input statement causes values to be transferred from the
input medium to the entities specified by the input list. As a value is
transferred to an entity, that entity becomes defined. Note that this may
affect subsequent list items. An input statement must not specify the reading
of more data from a record than the record contains,

5,12, 7.2 EXecution of Output Statements

Execution of an output statement causes values of the entities specified by
the output list to be transferred to the output medium. Every entity whose
value is to be transferred must be defined.

5.12.8 Unformatted Input/Output Statements

5.12.8.1 Unformatted Input Statements

5.12,8.1,1 Sequential Unformatted READ Statement

A sequential unformatted READ statement is of the form:
READ (unt [,ERR=g | EEND——;SQ) iolist
where: unt is a unit specifier
81 is a statement label for the error specifier
So is a statement label for the end-of-file specifier
iolist is an input list.

5. 12. 8. 1' lb N

At the inception of execution of this statement, the sequential file connected to
the specified unit must be positioned so that the next record is an unformatted
record or an endfile record. It must not be positioned within a free-field
record. -

5.12,8.1.1¢c

Execution of the input statement causes reading of the next record from the
sequential file connected to the specified unit, If there is a list, the values
in that record are assigned to the sequence of entities specified by the list.
The file is then positioned so that the record read becomes the preceding

- record. The number of values required by the list may be less than or
equal to the number of values in the unformatted record. If the list requires
more values than the record contains, an error condition exists.

5.12,8.1.1d
If the record read is an endfile record, execution of the statement causes an
end-of-file condition to exist.

5.12.8.1.2 Direct Access Unformatted READ Statement

A direct access unformatted READ statement is of the form:
READ (unt, REC=rn EERR=_S_]) iolist
where: unt is an external unit specifier

rn is an integer, real, or double precision expression that
has a positive value after conversion to an integer value
according to the rules for arithmetic assignment state-
ments, It specifies the number of the record that is to -
be read.

s is a statement label for the error specifier
iolist is an input list.

5.12.8.1.2b o

Execution of this statement causes the reading of record rn from the direct access
file that is currently connected to the specified unit. The values in that record

are assigned to the sequence of entities specified by the list. The number of values
required by the list may be less than or equal to the number of values in the

record, If the list requires more values than the record contains, an error
condition exists. R

5.12.8.1.2¢

An error condition exists if the record number rn is less than one, if rn
exceeds the maximum record number for a file with the maximum-record-
number property, or if rn exceeds the maximum record number given when
the file was opened.

5.12.8.1.2d
Reading an undefined record causes all entities specified by the list to become
undefined.

5.12.8.2 Unformatted Output Statements

5.12.8.2.1 Sequential Unformatted WRITE Statement

" A sequential unformatted WRITE statement is of the form:
WRITE (unt |, ERR#s |) iolist
where: unt is an external unit specifier -

s is a statement label for the error speciﬁer

iolist is an output list. Note that the list is required,

5.12,8.2.1b A
Execution of this statement creates and writes the unformatted next record

of the sequential file connected to the specified unit. The record contains the
sequence of values specified by the list. The unit is then positioned so that
the record written is the preceding record and is also the last record in

the file. If, at inception of execution of this statement, the file is posi-
tioned so that a current record exists, the record is terminated.

5.12,8.2.2 Dirgct Access Unformatted WRITE Statement
A direct access unformatted WRITE statement is of the form:
WRITE (unt, REC=rn [,ERR=s) iolist
where: unt is an external unit specifier |
m is an integer, real, or double precision expression that
has a positive value after conversion to an integer value

according to the rules for arithmetic assignment state-
ments. It specifies the number of the record that is to

be written,
s is a statement label for the error specifier
iolist is an output list. Note that the list is required.

5. 12. 8. 2. 2b

Execution of this statement causes the writing of the sequence of values
specified by the list into record rn of the direct access file that is currently
connected to the specified unit. The record written becomes or remains

defined.

5.12,8.2.2¢

An error condition exists if the file has the formatted-record property.
An error condition also exists if rn is less than one, if the file has the
maximum-record-number property and rn exceeds the maximum record
number for the file, or if rn exceeds the maximum record number given
when the file was opened. In these cases, the file is not modified,

5.12.8.2.2d

If the list specifies more values than can fit into a record, an error condition
exists. Unless another error condition exists, the record is written with as
many values as will fit into it.

5.12.8.2.2¢
If the values specified by the list do not fill the record, integer zero values
are added to fill the record.

5.12.9 Formatted-Input/Output Statements

5.12.9.1 Formatted Input Statements

5.12.9.1.1 Sequential Formatted READ Statement

A sequential formatted READ statement is one of the forms:
READ (unt, fmt EERR=_§1] EEND=_82 ') iolist

READ fmt Eiolisﬂ

where: unt is a unit specifier
fmt is a format specifier
8 isa statement label for the error specifier
D) isa statemenf; label for the end-of-file specifier
iolist is an input list
5.12.9.1.1b

The second form, which does not have a unit specifier, is equivalent to the
first form for some input unit which is preconnected by the processor. ‘

5.12,9.1.1c

At inception of execution of this statement, the sequential file connected to
the specified unit must be positioned so that the next record is a formatted
record or an endfile record. It must not be positioned within a free-field
record. ’

5.12,9.1.1d

Execution of this statement causes the reading of the next record, and

possibly additional records, from the file connected to the specified unit. ‘

Each record read must be a formatted record. The information in each ,
record is scanned and converted according to the specified format specification.
The resulting values are assigned to the entities specified by the list, The

file is then positioned so that the last record read becomes the preceding .
record. :

5.12.9.1.1e

If the list and format specification require more characters than a record
contains, all of the entities specified by the list become undefined and an
error condition exists.

5.12.9.1. 2 Direct Access Formatted READ Statement

A direct access formatted READ statement is of the form:
READ (unt, fmt, REC=rn EERR=§]) [_1_q_h_§_g
where: - unt is an external unit specifier
fmt is a format specifier

rn is an integer, real,or double precision expression that
has a positive value after conversion to an integer value -
according to the rules for arithmetic assignment state-
ments. It is the number of the first record that is to be
read.

s is a statement label for the error specifier
- jolist is an input list,

12,9.1.2b

Execution of this statement causes the reading of record rn from the direct
access file that is currently connected to the specified unit. If the list and
format specification require more than one record, the record number is
increased by one for each additional record required and these records

- are read as required. The information in each record is scanned and
converted according to the specified format specification. The resulting
values are assigned to the entities specified by the list.

5.12.9.1.2¢ v
If the initial record number rn is less than one, an error condition exists, If
any record number exceeds the maximum record number of a file with the
 maximum-record-number property, or the maximum record number given
when the file was opened, an error condition exists."

5.12.9.1.2d

If the list and format specification require more characters than a record
contains, all of the entities specified by the list become undefined and an
error condition exists.

5. 12. 9. 1. 2e .
Reading an undefined record causes all entities specified by the input list
‘to become undefined.

5.12,9.2 .F‘ormatted Output Statements

5.12.9.2.1 Sequential Formatted Output Statement

A sequential formatted output statement is of one of the forms:

WRITE (unt, fmt |,ERR=s]) [iolist
PRINT (unt, fmt [ERR=5]) [iolis

WRITE fmt {,iolist]
PRINT fmt Elolisf;l

where: _ug’_c_ | is a unit specifier
_fmt is a format specifier
s is a statement label for the error specifier
_io_lig_t_ " is an output list

5.12,9.2.1b

The first form of PRINT is equivalent to the first form of WRITE. The second .
form of WRITE, which does not have a unit specifier, is equivalent to the

first form of WRITE for some output unit which is preconnected by the pro-
cessor. The second form of PRINT, which does not have a unit specifier,

is equivalent to the first form of WRITE for some output unit which is pre-
connected by the processor. The units preconnected by the processor for
WRITE and PRINT statements may be the same or different units.

5.12,9.2.1c

Execution of this statement creates and writes the formatted next record
and possibly additional records on the sequential file connected to the
specified unit. The list specifies a sequence of values. These are
converted and positioned according to the specified format specification.
The file is then positioned so that the last record written is the preceding
record and is also the last record on the file. If, at inception of execution
of this statement, the file is positioned so that a current record exists,
that record is terminated,

5.12.9.2.2 Direct Access Formatted WRITE Statement

A direct access formatted WRITE statement is of the form:

WRITE (unt, fmt, REC=rn EERR=§])Eolisg

where: is an external unit specifier

unt
fmt is a format specifier
m

is an integer, real, or double precision expression that

has a positive value after conversion to an integer value

according to the rules for arithmetic assignment state-

ments., It is the number of the first record that is to be
- written,

5 is a statement label for the error specifier
jolist is an output list,

5.12,9.2.2b .
Execution of this statement writes the formatted record identified by rn in.
the direct access file that is currently connected to the specified unit, If
the list and format specification specify additional records, the record
number is increased by one for each additional record specified and those
records are also written. All records written become or remain defined.
The list specifies a sequence of values. These are converted to characters
and positioned according to the specified format specification.

5.12.9.2,2¢c

An error condition exists if rn is less than one. If any record number
exceeds the maximum record number of a file with the maximum-record-
number property or exceeds the maximum record number given when the
file was opened, an error condition exists. An error condition exists if
this statement is executed on a unit opened with the READ ONLY option, in
which case the contents of the file is not modified.

5.12.9.2.2d
If the values specified by the list and format do not fill a record, blank
characters are added to fill the record.

5.12.9.2.2¢

If the list and format specification specify more characters than can fit
into a record, an error condition exists, Unless another error condition
exists, the record is written with as many characters as will fit.

5.12.9.3 Printing of Formatted Records

If a formatted record is printed, the first character of the record is not
printed. The remaining characters of the record, if any, are printed in
one line beginning at the left margin.

5.12.9.3b
The first character of such a record determines vertical spacing as follows:

Character Vertical Spacing

Blank One Line

0 Two lines

1 To first line of next page

+ No advance

5.12.9. 3¢
If there are no characters in the record, the vertical spacing is one line and
no characters other than blank are printed in that line,

5.12,9, 3d .
WRITE and PRINT do not imply that printing either will or will not take place. ,

5.12.10 List-Directed Input/Output Statements

List-directed input/output statements are used to read and write free-fleld
records of sequential files,

5.12.10.1 Free-field Records

A free-field record consists of a sequence of values composed of characters
which are capable of representation in the processor. The forms of the
values are described in 5.12.10,2.1 and 5.12,10.3.1, Values within a free-
field record are read and written only by list-directed input/output statements,

- The length of a free-field record is measured in values and is not necessarily
known to the processor. Note that it is not possible to have two consecutive
free-field records. In addition, free-field records have the following properties:

(1) The values comprising the record exist as a totally ordered set.
There is a first value and a last value. The order of the values is
the order in which they were written,

(2) The record has a position property, from which are derived the
related_ concepts of next value, preceding value, and initial point.

(3) If a record is positioned between the ith and ith+l values, then the ith
value is the preceding value and the ithtl value is the next value.

(4) The initial point of a record is that unique position where the next
value is the first value in the record. If a file is positioned so that
the next record is a free-field record, that record is positioned
at its initial point. When the record is positioned at its initial
point, there is no preceding value.

(5) When the record is positioned after the last value, the last value is
the precedmg value and there is no next value.

5.12,10.1b
A free-field record consists of all the characters comprising a sequence of
values which can be read by one or more successive list-directed input state-
ments or which have been written by one or more successive list-directed output
statements. However, it is recognized that essentially all processors will sub-
divide a long sequence of characters into shorter sequences of characters that
appear as separate lines when printed. Therefore, a free-field record also
consists of one or more lines, The length of a line is measured in characters
and may vary among processors and among devices on the same processor.

5.12.10.2 List-Directed READ Statement

A lisf—directed READ statement is of one of the forms:
READ (unt, star |, ERR=g]] EEND=§2]) iolist
READ star, iolist | '
where: unt is an external unit specifier

star is either the character * or the form FMT=*

8 ' is a statement label for the error specifier
89 is a statement label for the end-of-file specifier

iolist - is an input list. Note that the list is required.

5.12,10.2b
The second form, which does not have a unit specifier, is equivalent to the
first form for some input unit which is preconnected by the processor.

5.,12,10,2¢c -

Upon inception of execution of a list-directed READ statement, the file
connected to the specified unit must be positioned so that the next or current
record is a free-field record containing values conforming to 5.12.10,2.1, or
so that the next record is an endfile record.

5.12,10,2d _
If the next or current record is a free-field record, execution of the READ
statement causes one or more successive values, beginning with the next
value, to be read from the record and assigned to the sequence of entities
specified by the list. The record is then positioned so that the last value

read is the preceding value, If this new preceding value is not the last value
of the record, the record becomes or remains the current record. If the ‘
new preceding value is the last value of the record, the record becomes the
preceding record and there is no current record.

5.12.10, 2e
If an endfile record is read during executlon of a list-directed READ statement,

an end-of-file condition exists.

5.12,10. 2f ; ,

Note that each READ statement does not always begin reading data at the
beginning of a line and that reading may continue with the remaining values
of a repeated constant that supplied some values to a previous READ state-

ment,

5.12'. 10.2.1 Free-Field Input Records

A free-field input record consists of a sequence of values and value separators.
Values are separated by one of the following four kinds of value separators:

(1) one or more blanks

(2) a comma optionally preceded by one or more blanks and optionally
followed by one or more blanks

3) a élash optionally preceded by one or more blanks and optionally
followed by one or more blanks

(4) the end of a line, except within a character constant or complex
constant,

5,12,10.2.1b
Each value is either a constant, a null value, or one of the forms:

r¥c
r*

where r is an unsigned nonzero, integer constant. The r*c form is equivalent
to r successive appearances of the constant ¢ and the r* form is equivalent

to rsuccessive null values, Neither of these two forms may contain embedded
blanks, except where permitted within the constant ¢. Neither may contain an
imbedded end of a line.

5.12,10.2.1c

Hollerith constants are not permitted in free-field input records, Other-
wise any form acceptable in a formatted input field for a given type (Section
5.13) is also acceptable as a free-field input value. In addition, an integer
constant is acceptable as a real constant with an implied decimal point to the
right of the rightmost digit. The form of the input value must be acceptable
for the type of the list item. Blanks are never used as zeros, and embedded
blanks are not permitted in constants except within character constants and
surrounding the comma between the real and imaginary parts of a complex
constant,

5.12,10.2,1d

A null value, as specified by the r* form, the first nonblank character being

a slash or a comma, two commas separated by zero, one, or more blanks, or
a comma and a slash in either order separated by zero, one, or more blanks,
has no effect on the definition or undefinition of the corresponding list item.

If the list item is defined, it retains its previous value, if it is undefined, it
remains undefined. A null value may not be used as either the real or
imaginary part of a complex constant, but it may be supplied in place of an
entire complex constant. Note that the end of a line adjacent to any other
separator, with or without separating blanks, does not generate a null item.

5.,12.10.2.1e.

A slash encountered in the input record causes termination of execution of
the statement after the assignment of any previous values. If there are
additional items in the input list. the effect is as though null values had
been supplied for them,

5.12.10,2.1f :

Note that a complex constant must have its normal form of a pair of real or
integer constants enclosed in parentheses, Embedded blanks are permitted
immediately before or after the comma that separates the real part and the
imaginary part, and the end of a line may occur between the real part and
the comma or between the comma and the imaginary part.

5.12,10.2.1g

Hollerith constants are not permitted in free-field input records. Character
constants enclosed in apostrophes are permitted when the corresponding list
item is of type character. Each apostrophe within a character constant must
be represented by two consecutive apostrophes with neither blanks nor the '
end of a line infervening, Character constants may be continued from the end
of one line to the beginning of the next line. The end of the line does not cause
a blank or any other character to become part of the constant. The constant
may be continued on as many lines as needed. Blanks, commas, and slashes
may appear in character constants.

'5.,12,10,3 List-Directed Output Statement

A list-directed output statement is of one of the forms:

WRITE (unt, star [,ERR=s]) iolist
PRINT (unt, star [,ERR=S]) Jolist

- WRITE star, iolist
PRINT _star, iolist

where: unt is an external unit specifier
star | is either the character * or the form FMT=*
s - s é, statement label for the error specifier
dolist is an outbut list. Note that the list is required.

5.12,10, 3b

The second form of WRITE, which does not have a unit specifier, is equiva-

lent to the first form of WRITE for some output unit which is preconnected

by the processor. The second form of PRINT, which does not have a unit
specifier, is equivalent to the first form of PRINT for some output unit

which is preconnected by the processor. The units preconnected by the processor
for WRITE and PRINT statements may be the same or different units.

5.12,10.3c -
~ Execution of a list-directed output statement created or extends a free
field record of the sequential file connected to the specified unit,

5.12,10.3d :

If, at inception of execution of the output statement, the file is positioned
at its initial point, execution of the statement creates the first record, If,
at inception of execution, the file is positioned so that the ith record is the
preceding record and there is no current record, execution creates the
ith+] record. In either case, execution of the output statement causes the
sequence of items specified by the list to be written as a sequence of values
beginning with the first value of the record. The values produced must con-
form to 5.12.10.3.1. The record is positioned so that the last value written
is the preceding value and is also the last value in the record. The record
created becomes the current record and is the last record in the file,

5.12,10.3e

If, at inception of execution of the output statement, there is a current record,
execution of the output statement extends that record. Execution of the out-
put statement causes the sequence of elements specified by the list to be
written on the record as a sequence of values beginning with the next value

of the record, The values produced must conform to 5.12,10,3.1. The file
is positioned so that the last value written is the preceding value and is also
the last value in the record. The record remains the current record and is
the last record in the file. Note that an output statement does not necessarily
begin a new record. However, inception of execution of an output statement
begins a new line,

5.12,10,3f _

If, at inception of execution of any sequential or list-directed output state-
ment, the file is positioned within a repeated constant, the repeat count of
that constant is reduced by the processor in order to preserve the contents
of the record read up to that point. Note that this may require modification
and rewriting of the most recent input line, but no others, since the form
r*c must be contained within a single line.

5.12,10.3.1 Free-field Output Records

A free-field output record consists of a sequence of values that have the

same form as constants, except as noted otherwise. The only separators
produced are blanks and the end of a line. The processor may start new

lines as necessary, but, except for complex constants and character constants,
the end of a line must not occur within a constant and blanks must not appear
within a constant,

5.12,10.3.1b
Logical output constants are T for a true value and F for a false value.

5.12,10.3.1c

Real and double precision constants are produced with either the equwalent
of an F field descnptor or an E field descriptor, depending on the value
and the processor. For a value of X and some processor-dependent integer
values for d, and dg, the constant is produced with some reasonable F field
descrlptor if 10*+*d; < 1x1<10**dy; otherwise, a field descriptor of IPEw.dEe
is used for some reasonable values of w, d, and e, except that the scale
factor does not affect any subsequent fields.

5,12,10,.3.1d
” Complex constants are enclosed in parentheses, with a comma separating
the real and imaginary parts. The end of a line may occur between the
comma and the imaginary part only if the entire constant is longer than an
entire line. The only embedded blanks permitted within a complex constant
are between the comma and the end of a line and one blank at the beginning
of the next line,

5.12,10.3.1e
Hollerith constants are not produced in free-field output records. The end
of a line may not occur within a character constant unless the constant is
longer than an entire line., Note that such constants cannot be repeated by
use of the form r*c, Character constants produced by a PRINT statement
are not delimited by apostrophes, are not preceded or followed by a value
separator, have each internal apostrophe represented externally by one
apostrophe, and have a blank character inserted by the processor for
carriage control at the beginning of any line that begins with the continua-
tion of a character constant from the previous line. Character constants

- produced by WRITE statements are delimited externally by apostrophes, are
preceded and followed by a value separator, have each internal apostrophe
represented externally by two successive apostrophes without blanks or the
end of a line intervening, and do not have a carriage control character
inserted by the processor when a character constant is continued from one
line to the next. Note that free-field records produced by PRINT state-
ments are not always acceptable as free-field input records, but free-
field records produced by WRITE statements are always acceptable as
free-field input records,

5.12,10,3.1f :

If two or more successive values in a free-field output record produced by

a list-directed PRINT statement have identical values, the processor has the
option of producing a repeated constant of the form r*c instead of the sequence
of identical values. The processor does not have this option for records
produced by list-directed WRITE statements.

5.12,10.3.1g
Commas and slashes as separators, and null values (including the form
r*), are not produced in free-field output records.

5.12,10.3.1h _

~ Except for character constants continued from the previous line by a WRITE
statement, each free-field output line begins with a blank character to prov1de
carriage control when the line is printed.

5.12,11 Auxiliary Input/Output Statements

5.12.11.1 OPEN Statement

An OPEN statement may be used to cannect an existing file to a unit, or to
create and connect a file to a unit.

5.12.11. 1b ,
An OPEN statement is of the form:

OPEN(unt |: NAME=fin [STATUS =typ | | ACCESS—acc’
L FORM =ft | ECL-rl.e ;,MAXREC—maxr T
Y“ERR—S” “‘BLANK—blnk | IS READ ONLY | y

where: unt is an external unit specifier

fin is a character expression that is the name of the file to be
connected to the specified unit. An error condition exists
if the file name is not acceptable and meaningful to the
processor. If this specifier is omitted, the specified unit
- is connected to a processor-determined file. Note that this
processor-determined file must not be preconnected.

typ is a character expression whose value when any trailing blanks
are removed is 'OLD', 'NEW', 'SCRATCH', or 'UNKNOWN!',
If 'OLD' or 'NEW' is specified, a NAME specifier must be
given. If 'OLD'is specified, the file must exist; otherwise,
an error condition exists, If '"NEW' is specified, the file
must not exist; otherwise, an error condition exists. If
'SCRATCH' is specified with an unnamed file, the file is
connected to the specified unit for use by the executable program
but is deleted either at the execution of a CLOSE statement re-
ferring to the same unit or at the termination of the executable
program. 'SCRATCH' may not be specified with a named file.
If "UNKNOWN' is specified, then the type is processor dependent.
If typ is not specified, a value of '"UNKNOWN!' is assumed. \

5.12,11. b2

acc is a character expression whose value when any trailing blanks
~ are removed is 'DIRECT' or 'SEQUENTIAL'. It specifies the

file as being a direct access file or a sequential file. For an
existing file, this specification must agree with the actual file;
otherwise, an error condition exists. If this specifier is
omitted, the assumed value is the same as the access method
for an existing file, and is 'SEQUENTIAL' for files being
created.

ft is a character expression whose value when any trailing
blanks are removed is '"FORMATTED' or 'UNFORMATTED'.
It may be specified only for a direct access file. If the file
is being created, this specifier determines whether the
records of the file are all formatted, or all unformatted. If
the file exists, the specifier must agree with the actual
property of the file; otherwise, an error condition exists,
If this specifier is omitted for an existing file, the actual
property of the file will be assumed. If this specifier is
omitted for a file being created, the value '"UNFORMATTED'
is assumed,

rl is an integer, real, or double precision expression, whose

* value is converted to an integer according to the rules for ,
arithmetic assignment statements. It specifies the length of
each record in a direct access file. If the records are for-
matted, the length is the number of characters. If the

records are unformatted, the length is the number of storage
units. If the file exists and rl does not agree with the actual
length of the records, an error condition exists. If the file

is being created, rl specifies the record length property, If
this specifier is omitted for old files, the actual record length
is assumed. This specifier must be given when a direct access
file is created. This specifier may not be given for a sequential
file.

5.12.11,1b3

maxr is an integer, real, or double precision expression, whose
value is converted to an integer according to the rules for
arithmetic assignment statements, If MAXREC=maxr is
- specified when a file is created, the file is given the maximum-
record-number property, and maxr is the maximum record
- number, If this specifier is omitted when the file is created, the
- file is given the property of having no maximum record number,
and the MAXREC=maxr specifier may not be given on subsequent
openings of the file. An error condition exists if maxr is speci-
fied for a file that is not a direct access file, or for an existing
direct access file that does not have the maximum -record-number
‘property. For existing files with the maximum-record-number
property, an error condition exists if maxr is specified to be
other than the maximum record number of the file. It may be
specified to be less than the maximum record number of the
. file. In this case, maxr does not modify the property of the
file, but does become the maximum record nunb er of the file
that can be read or written by this program. An attempt to
read or write using a larger record number causes an error con-
dition to exist and results in no modification to the file, If this
-specifier is omitted on an existing file with the maximum-record-
number property, the assumed value is the maximum record number
of the file,

is a statement label for the error specifier

bink . is a character expression whose value when any blanks are
removed is '"BLANK' or 'ZERO'. If 'BLANK' is specified
all blank characters in numeric formatted input fields on
“the specified unit are ignored, except that a field of all blanks
- has a value of zero. If 'ZERO' is specified, all blanks other
than leading blanks are treated as zeros. If this specifier is
omitted, then the effect is as if BLANK='ZERO' were specified.

5.12.1l.1c.

The READ ONLY specifier permits reading of an old file and prohibits writing
into that file. Execution of an output statement on the unit results in error
condition and results in no modification to the file. Note that this specifier
does not assign an property to the file, but only protects it against accidental
modification by the executable program.

5.12,11.1d -

The unit specifier is required to appear; all other specifiers are optional,
except that the record length rl must be specified if the file is being created
and the access is direct. As noted above, however, some of the specifica~
tions have an assumed value if they are omitted.

5.12.11.1e :

If a unit is connected to a file, the execution of an OPEN statement on that
unit, or on that file, is not permitted. The previous connection could be by
a previous execution of an OPEN statement or by preconnection.

5.12. 11 If

A unit may be connected by execution of an OPEN statement in any program
unit of an executable program and, once connected, may be referenced in any
program unit of that executable program.

5.12.11.2 CLOSE Statement

A CLOSE statement may be used to remove the connection of a particular
file or a sequence of sequential files to a unit. '

5.12,11. 2b
A CLOSE statement is of the form:

CLOSE (ut |,sTa TUs=dis| |,ERR=s))
where: unt is an external unit specifier
dis is a character expression whose value when any trailing

blanks are removed is 'KEEP' or 'DELETE', dis -determines
the disposition of the file that is connected to the specified unit.

If 'KEEP' is specified, the file continues to exist after the
execution of the CLOSE statement, If 'DELETE' is specified,
the file ceases to exist after execution of the CLOSE statement,
unless it was opened with the READ ONLY option, If the

file was opened with the READ ONLY option and 'DELETE' is
specified, an error condition exists and the file continues to
exist after execution of the CLOSE statement, If this

specifier is omitted, the assumed value is '"KEEP' unless

the file's type is 'SCRATCH' in which case the assumed

value is 'DELETE'.

- is a statement label for the error specifier,

5.12,11.2¢ . ' ‘
The closing of a unit may occur in any program unit of an executable program
and need not be done in the same program unit as the opening,

5.12.11. 2d
Execution of a CLOSE statement referring to a unit that has no file connected
to it is permitted and has no effect.

5.12,11. 2e

After a unit has been disconnected by execution of a CLOSE statement, it may
be connected again within the same executable program and connected to the
same file or a different file. After a file has been disconnected by execution
of a CLOSE statement, it may be connected again within the same executable
program to the same or to a different unit,

5,12,11,3 INQUIRE Statement

An INQUIRE statement may be used to inquire about properties of a particular
named file or of the file connected to a particular unit, There are two forms of
the INQUIRE statement: inquire by file and inquire by unit. Note that, except
for the specifiers that identify the two forms, they contain the same set of
specifiers which identify variables or array elements in which values for the
properties are to be returned. However, the values of some of these properties
have different meanings, depending upon which form is used.

5.12.11.3.1 INQUIRE by File
The INQUIRE by file statement is of the form:
INQUIRE (FILE=fin [, EXIST=ex | g;opENED@pj

|, NUMBER=num ,NAMED=nmd | [NAME=fn]
[MAXREC=maxf¥| [ERR=s]) -

where; fin is a character expression specifying the name of the file being
inquired about. The named file may or may not be connected
to a unit. If the value of fin is not of a form acceptable to the
processor as a file name, an error condition exists.

ex is a logical variable or logical array element that becomes
defined to true if there exists a file by that name; otherwise,
ex becomes defined to false.

op is a logical variable or logical array element that becomes
o defined to true if the file is connected to a unit; otherwise, op
becomes defined to false.
5.12.11.3.1b

The specifier variables or array elements num, nmd, In, acc, fm, rcl, and
maxr, become defined only if the value of fin is acceptable to the processor.as
a file name and if there exists a file by that na name; otherwise, they become unde-
fined. They are described in 5.12,11.8.3. s is also described in 5.12.11. 3. 3.

5.12.11.3.2 INQUIRE by Unit

The INQUIRE by unit statement is of the form:

INQUIRE (UNIT=u | EXIST=ex] |,OPENED=op]
1, NUMBER=num } NAMED=nmd| [NAME=fi] -
[y MAXREC=maxf | RR=§1)

where: u is an external unit identifier. It identifies a unit to which
: a file need not be connected. If a file is connected to this
unit, it is the file being inquired about.

ex is a logical variable or logical array element that becomes
defined to true if the specified unit exists and is known to the
processor; otherwise, ex becomes defined to false,

op is a logical variable or logical array element that becomes
' ~ defined to true if a file is connectad to the unit; otherwise,
op becomes defined to false.

5.12,11, 3. 2b
The specifier variables or array elements num, nmd, fn, acc, fm, rcl, and maxr
become defined only if the specified unit ex1sts and is known to the processor ~and
if a file is connected to that unit; otherwise, they become undefined. They are
described in 5.12.11.3.3. s is also described in 5.12.11.3. 3.

5.12,11.3.3 Inquiry Specifiers for Either Form

Either form of the INQUIRE statement may include inquiry specifiers containing
the following entities:

nmd

&

num

acce

rel -

maxr

foa

5.12.11.3.3b

is a logical variable or logical array element that becomes defined
to true if the file has a name; otherwise, it becomes defined to
false.

is a character variable or character array element that becomes
defined to the name of the file, if the file has a name; otherwise,
fn becomes undefined. Note that, if this specifier appears in an
inquire by file, its value is not necessarlly the same as the name
given in the FILE=finspecifier.

is an integer variable or integer array element that becomes
defined to the value of the external unit identifier of the unit that
is currently connected to the file, If there is no unit connected
to the file, num becomes undefined,

is a character variable or character array element that becomes
defined to 'DIRECT! if the file is a direct access file and becomes
defined to 'SEQUENTIAL' if the file is a sequential access file.

is a character variable or character array element that becomes
defined to '"FORMATTED' if the direct access file consists entirely
of 'FORMATTED' records and becomes defined to "UNFORMATTED'
if that file consists entirely of unformatted records, If the file

is not a direct access file, fm becomes undefined.

is an integer variable or integer array element that becomes de-
fined to the record length of the direct access file. The length

is measured in characters for formatted files and in storage

units for unformatted files., recl becomes undefined if the file is not a
direct access file,

is an integer variable or integer array element that becomes
defined to the maximum number of records in the direct access
file. If the file does not have the mammum-record—number
property, maxr is undefined.

is a statement label for the error specifier. If an error
condition occurs during execution of an INQUIRE statement,
all the specified varlables and array elements become
undefined.

An INQUIRE statement may be executed before, while, or after a file is connected
to a unit. "All definitions caused by the INQUIRE statement are those that are
- current at the time the statement is executed.,

5.12.11.4 REWIND Statement
A REWIND statement is of one of the forms:
REWIND u

REWIND (unt |, ERR=])

where: u is an external unit identifier
unt is an external unit specifier
s is a statement label for the error specifier.

5.12.11.4b

Execution of this statement causes the file connected to the specified unit to
be positioned at its initial point. If the file connected to the specified unit is
already positioned at its initial point, execution of this statement has no
effect,

5.12,11.4c
The specified unit must be connected to a sequential file,

5.12.11.5 BACKSPACE Statement

A BACKSPACE statement is of one of the forms:
BACKSPACE u

BACKSPACE (unt ECOUNT@ EERR=§])

where: u is an external unit identifier
unt is an external unit specifier
n is an integer, real, or double precision expression that has

a positive or zero value after conversion to an integer value
according to the rules for arithmetic assignment statements.

s is a statement label for the error specifier.

5.12,11. 5b

The file connected to the specified unit is repositioned as follows: BACKSPACE

without COUNT=n causes the preceding record, if it exists, to become the
next record. If there is no preceding record, execution of the statement has
no effect. BACKSPACE with COUNT=n is equivalent to n consecutive applica-
tions of BACKSPACE without COUNT=n, Note that endfile records are counted
as records during execution of this statement. Note also that n=0 results in
no repositioning,

5.12.11. 5¢
Backspacing over free-field records is not permitted.

5.12,11, 5d
The specified unit must be connected to a sequential file.

5.,12,11. 6 ENDFILE Statement

An ENDFILE statement is of one of the forms:
ENDFILE u
ENDFILE (unt [,ERR=s))

where: u is an external unit identifier

unt is an external unit specifier

|t

is a statement label for the error specifier

Execution of this statement creates an endfile record as the next record of
the file. The unit is then repositioned so that the record written is the
preceding record, and is also the last record in the file. If at inception

of execution of this statement, the file is positioned so that a current record
exists, that record is terminated by inception of execution of the statement.

5.12,11, 6b
The specified unit must be connected to a sequential file.

5.12.11.7 BACKFILE Statement

A BACKFILE statement is of one of the forms:
BACKFILE u

BACKFILE (unt [,COUNT-n| {ERR{E)

where: u is an external unit identifier
unt is an external unit specifier
n is an integer, real, or double precision expression that has a
positive or zero value after conversion to an integer value
according to the rules for arithmetic assignment statements.
s is a statement label for the error specifier.
5.12,11,7b

The sequence of sequential files connected to the specified unit is repositioned as
follows: BACKFILE without COUNT=n causes the endfile record of the preceding

\ . :

file, if it exists, to become the next record. If there is no preceding file,
the unit is positioned at its initial point, BACKFILE with COUNT=n is
equivalent to n applications of BACKFILE without COUNT=n, If n=0, no
repositioning occurs.

5.12,11.7c
The specified unit must be connected to a sequential file.

5.12,11.8 SKIPFILE Statement

A SKIPFILE statement is of one of the forms:
SKIPFILE u

SKIPFILE (wnt [,COUNT=a] fERrR=s])

where: u ' is an external unit identifier
unt is an external unit specifier
n is an integer, real, or double precision expression that

has a positive or zero value after conversion to an integer
value according to the rules for arithmetic assignment
statements.

s is a statement label for the error specifier.

5.12.11.8b

SKIPFILE without COUNT=n causes the sequence of sequential files connected
to the specified unit to be repositioned so that the next endfile record becomes
the preceding record, This form cannot be used unless an endfile record
exists beyond the current position of the file. SKIPFILE with COUNT-n is
equivalent to n applications of SKIPFILE without COUNT=n. This form may
not be used unless at least n endfile records exist beyond the current position
of the file. If n=0, no repositioning occurs,

5. 12 [] 11. Sc .
The specified unit must be connected to a sequential file.

5.12,12 Restrictions on Function References and List Items

A function cannot be referenced within an expression appearing anywhere in

an input/output statement if such a reference causes any input/output statement
to be executed, A list item, or a function reference appearing in a list item,
may not affect any unit identification, format specification, or record specifier
that appears in the same input/output statement. Similarly, a function refer-
ence that appears in a unit specifier, format specifier, or record specifier
may not affect any entity appearing in the input/output statement except the
entity that contains the function reference. A function reference that

appears in a list item may affect subsequent list items, but not prior list
items,

file, if it exists, to become the next record. If there is no preceding file,
the unit is positioned at its initial point. BACKFILE with COUNT=n is
equivalent to n applications of BACKFILE without COUNT=n, If n=0, no
repositioning occurs.

5.12.1l.7¢
The specified unit must be connected to a sequential file.

5.12.11. 8 SKIPFILE Statement

A SKIPFILE statement is of one of the forms:
SKIPFILE u

SKIPFILE (unt ECOUNT=gj EERR=§;])

where: u is an external unit identifier
unt is an external unit specifier
n is an integer, real, or double precision expression that

has a positive or zero value after conversion to an integer
value according to the rules for arithmetic assignment
statements., '

s 1is a statement label for the error specifier,

5.,12,11.8b .

SKIPFILE without COUNT=n causes the sequence of sequential files connected
to the specified unit to be repositicned so that the next endfile record becomes
the preceding record. This form cannot be used unless an endfile record
exists beyond the current position of the file. SKIPFILE with COUNT-n is
equivalent to n applications of SKIPFILE without COUNT=n. This form may
not be used unless at least n endfile records exist beyond the current position
of the file. If n=0, no repositioning occurs.

56 12 . 11. 80
The specified unit must be connected to a sequential file.

5.12,12 Restrictions on Function References and List Iitems

A function cannot be referenced within an expression appearing anywhere in

an input/output statement if such a reference causes any input/output statement
to be executed. A list item, or a function reference appearing in a list item,
may not affect any unit identification, format specification, or record specifier
that appears in the same input/output statement. Similarly, a function refer-
ence that appears in a unit specifier, format specifier, or record specifier
may not affect any entity appearing in the input/output statement except the
entity that contains the function reference. A function reference that

appears in a list item may affect subsequent list items, but not prior list
items.,

5.12.13 Restriction on Input/Output Statements

If a unit, or a file connected to a unit, does not have all of the properties re-
quired for the execution of certain input/output statements, those statements
may not refer to that unit, For example, an input statement may not specify
a unit that cannot provide input to the processor.

5.12,14 ENCODE/DECODE STATEMENTS

The ENCODE and DECODE statements provide the capability of making memory-
to-memory data transfers under format control. The object code generated
by the compiler for these statements is similar to that generated for the

formatted WRITE and READ statements.

The general forms of the statements are
ENCODE (block, f) list
DECODE (block, f) list

In the above statements, list represents a standard I/0 list, f is the statement
number of a FORMAT statement or the name of an array that contains format
specifications, and block is the name of an array or variable to/from which
data is to be transferred.

Execution of the ENCODE statement causes the contents of list to be converted
according to the specified format and the results to be stored in block. The
string of characters generated are stored, as 7-bit ASCII, into consecutive
locations of block. A block into which data is ENCODE'd must be at least

132 bytes in length.

Execution of the DECODE statement causes the contents of the block to be
moved into the list items in accordance with the format specifications.

The number of characters per logical record is limited to 132 characters.
If the number of characters in a logical record generated by ENCODE is not
a multiple of four, the last word is blank filled. For both ENCODE and
DECODE, the image of a subsequent record starts with the first character
of the next word in the block area. - ' '

The ENCODE and DECODE statements can be likened to formatted WRITE and
READ statements. Rather than transferring data between a peripheral unit
and main storage, data is transferred between the areas of main storage..
Thus, it is possible to move information from block to list while manipulating
it with format specifications without accessing a peripheral device.

5.12.15 INCLUDE Statement

The INCLUDE statement is a compile time statement and is of the form:
INCLUDE (unt, filename)

This statement will cause the compiler to read its source from the filename
on logical unit unt. When the compiler reaches an END statement or an
end-of-file on the file, the compiler resumes reading from the original
input source. The file on unit unt may not contain an include statement.

5.13 FORMAT SPECIFICATION
Format specifications are used in conjunctlon with formatted input/
output statements to provide conversion and editing information be-
tween the internal representation and the external character strings.
Format specifications may be given:

(1) using FORMAT statements.

(2) as values of character variables, character arrays, or
character expressions, and

(3) as Hollerith data in arrays of type other than character.

5.13.1.1 Character Format Specifiations

When the format identifier (12.4) in any of the formatted input/
output statements is a character expression, the first part of the
specified entity must contain character data that constitutes a for-
mat specification.

5.13.1.1b

The format specification must have the form described in 13.2. It
must begin with a left parenthesis and end with a right parenthesis.
Character data following the right parenthesis that ends the format
specification has no effect on the format spec1f1cat10n.

- A character format specification must not contain a Hollerith field
descriptor; it may contain a character field descriptor.

5.13.1.1c

If the format identifier is a character array, the length of the for-
mat specification may exceed the length of the first element of that
array; a character array format identifier is considered to be a con-
catenation of all of the array elements of that array. However, if

a character array element is specified as a format identifier, the
length of the format specification must not exceed the length of

that array element.

5.13.1.2 FORMAT Statements
A FORMAT statement is of the form:

FORMAT fs

where: fs is a format specification as descrlbed in 5.13.2. The
statement must be labeled.

5.13.1.3 Hollerith Format Specifications

When the format identifier in a formatted input/output statement is
an array name of type other than character, the first part of the

]G

specified entity must contain Hollerith data that constitutes a for-
mat specification.

5.13.1.3b

The format spec1f1catlon must be of the form described in 5.13.2.

It must begin with a left parenthesis, and end with a right paren-
thesis. Hollerith data following the right parenthesis that ends the
format specification has no effect on the format specification. ’

5.13.1.3c
A Hollerith format specification cannot contain an apostrophe field
descriptor or a Hollerith field descriptor.

5.13.1.3d

Hollerith format specifications may be inserted in arrays only by
the use of DATA statements, or by the use of READ statements
‘with Aw field descrlptors.

5.13.2 Format Specification

A format 4pec1f1catlon is a format group or is the form (). - A for-
mat group is of the form:

(a, 'E\Eg ta. %"“ k"a‘)

Pt 3

(

where: a is a series of one or more slashes, a colon, a series
of slashes with a single colon preceding, following, .
or embedded, or is empty.

t is a field descriptor or an optionally repeated format
group.

z is a field separator.

An‘optionally repeated format group is of the form:

[r_] ‘Y‘ormcﬁ‘ gtaup

where r is a nonzero, unsigned, integer constant. If r is omitted,
it assumed value is 1.

5.13.2.1 Field Descriptors

Field descriptors are of the forms:
B10] Fu.d
-1 Ewd

L1l BEw., dEP _

810l kw.d Do

10 G d

[10r] Dw.d

llw

Dllwm

WiLw

1oz

I Aol

nH “\»‘\ "'k\\
"hoh o by
2 X

TG

P

[s

where: F, E, G, D, I, L, A, H, X, T, P, and S are letters that
indicate the manner of conversion and editing between the
internal and external representations and are called the
conversion codes. '

W, n, e, ¢, and r are nonzero, unsigned, integer constants.

k is an optionally signed integer constant.

d and m are unsigned integer constants.

S represents a scale factor designator, described in
5.13.3.1.2 :

h is one of the characters capable of representation by .
the processor.

n

is a nonzero, optionally signed, integer constant.

+ signifies a plus or a minus

5.13.2.1b
Constants in format specifications may not be symbolic names of con-
stants (8.7). ‘

5.13.2.1c
The phrase basic field descriptor is used to signify the field de-
scriptor unmodified by s or r. ;

5.13.2.1d
The internal representation of external fields corresponds to the in-
ternal representation of the corresponding type constants (Section 4).

5.13.2,2 Field Separétors

A format field separator is a comma, a colon, a series of one or more
slashes, or a series of slashes with a single colon preceding, fol-
lowing or embedded. The field descriptors or groups (13.2.3) of field
descriptors are separated by a field separator. '

5.13.2.2b .

The slash is used not only to separate field descriptors, but to spe-
cify demarcation of formatted records. A formatted record is a string
of characters. The length of a formatted record depends primarily
upon the number of characters put into the record when it was writ-
ten. However, it may be dependent upon the processor and the ex-
ternal medium.

I&H

5.13.2.2c

The processing of the number of characters that can be contained in
a record by an external medium does not of itself cause the be-
ginning of processing of the next record.

5.13.2.24 ' ,

The colon is used not only to separate field descriptors, but to
terminate format control (13.4) if there are no more items in the
input/output list.

5.13.2.3 Repeat Specifications

Repetition of the field descriptors (except H, X, T, S, P, and apos-
trophe field descriptors) or format group is accomplished by using
the repeat count. If the input/output list is long enough, the _
specified basic field descriptor or format group will be interpre-
ted repetitively the specified number of times.

5.13.3 Basic Field Descriptors

5.13.3.1 Scale Factor

A scale factor may be specified by a separate P field descriptor or
by a scale factor designator.

5.13.3.1.1 P Field Descriptor

The P field descriptor is of the form:

kP

where k, the scale factor, is an optionally signed integer constant.

5.13.3.1.2 Scale Factor Designator

A scale factor designator may be used with the F, E, G,'and D
conversions and is of the form: ,

kP

where E, the scale factor, is an optionally signed integer con-
stant. '

5.13.3.1.3 Scale Factor Effects

At beginning of execution of a formatted input/output statement, a
scale factor of zero is established. Once a scale factor has been
established, it applies to all subsequently interpreted F, E, G,
and D field descriptors until another scale factor is encountered,
and then that scale factor is established.

5.13.3.1.3b
The scale factor k affects the appropriate conversions in the fol-
lowing manner:

(1)

(2)

(3)

(4)

For F, E, G, and D input conversions (provided no exponent exists
in the external field) and F output conversions, the scale fac-
tor effect is as follows: externally represented number equals
internally represented number multiplied by 10 ** k.

For F, E, G, and D input, the scale factor has no effect if
there is an exponent in the external field.

For E and D output, the basic real constant'part of the output
quantity is multiplied by 10 ** k and the exponent is reduced by
k.

For G output, the effect of the scale factor is suspended unless
the magnitude of the datum to be converted is outside the range
that permits the use of F conversion. If the use of E conversion
is required, the scale factor has the same effect as with E out-
put.

5.13.2.2 Numeric Conversions

The numeric field descriptors I, F, E, G, and D are used to specify
input/output of integer, real, double precision, .and complex data.
Except where noted otherwise, the following general rules apply:

(1)

(2)

(3)

(4)

(5)

With all numeric input conversions, leading blanks are not sig-
nificant and other blanks are zero unless an executed OPEN state-
ment has specified that all blanks are insignificant for the file
being read. ‘Plus signs may be omitted. A field of all blanks
is considered to be zero.

With the F, E, G, and D input conversions, a decimal point appear-
ing in the input field overrides the decimal point specification
supplied by the field descriptor. The input field may have more
digits than the processor will use to approx1mate the value of

the datum.

With all output conversions, the external representation of a
negative value must be signed. The external representation of a
positive or zero value may have a sign, or may not, as controlled
by the S field descriptor (13.3.8) or the processor.

With all output conversions, the output field is rlght justlfled
If the number of characters produced by the conversion is smaller
than the field width, leading blanks will be inserted in the out-
put field.

If the number of characters produced by an output conversion exceeds
the field width, or if an output exponent exceeds its specified
length, the processor will fill the entire field of width w with
asterisks. However, the processor must not produce asterisks if
the field width is not exceeded when optional characters are omitted.

5o s
Fowi

5.13.3.2.1 Integer Conversions

The numeric field descriptors Iw and Iw * m indicate that the external
field occupies w positions as an integer. The value of thelist item
appears, or is to appear, internally as an integer datum.

5.13.3.2.1b : :

In the external input field, the character string must be in the form
of an optionally signed integer constant (4.2.1), except for the inter-
pretation of blanks (13.3.2, item (1)).

5.13.3.2.1lc o

The external output field for the Iw field descriptor consists of
blanks, if necessary, followed by a minus if the value of the inter-
nal datum is negative, or an optional plus otherwise, followed by the
magnitude of the internal value converted to an unsigned integer
constant. Note that an integer constant always consists of at least
one decimal digit.

'5.13.3.2.1d

The external output field for the Iwv-m field descriptor is the same
as for the Iw field descriptor except the unsigned integer constant
consists of at least m decimal digits and, if necessary, has leading
zeros. If m is zero and the value of the internal datum is zero,
the external output field consists of only blank characters.

5.13.3.2.2 Real and Double Precision Conversions

There are four conversions available for use with real and double pre-
cision data: F, E, G, and D. '

5.13.3.2.2.1 F Conversion

The numeric field descriptor Fm-d indicates that the external field ‘
occupies w positions, the fractional part of which consists of d digits.
If the list item is real, the value appears, or is to appear, inter- '
nally as a real datum. If the list item is double precision, the
value appears, or is to appear, internally as a double precision datum.

5.13.3.2.2.1b ’

The basic form of the external input field consists of an optional
sign, followed by a string of digits optionally containing a decimal
point. The basic form may be followed by an exponent of one of the
following forms:

(1) Signed integer constant.

(2) E followed by an optionally signed integer constant.

(3) D followed by an optionally signed integer constant.

An exponent containing D is equivalent to an exponent containing E.

j Z : ;‘-,::»

5.13.3.2.2.1c

The external output field consists of blanks, if necessary, followed
by a minus if the internal value is negative, or an optional plus
~otherwise, followed by a string of digits containing a decimal point
representing the magnitude of the internal value, as modified by the
established scale factor, and rounded to d fractlonal digits.

5.13.3.2.2.2 E and D Conversion

The numeric field descriptor Em-d, Dw-d, Ew-d, Ew-dEe, or Ew-dDe
.indicates that the external field occuples p051t10ns, the fractional
part of which consists of d digits. If the Tlist item is real, the
value appears, or is to appear, internally as a real datum. If the
list item is double prec151on, the value appears, or is to appear,
internally as a double precision datum. ,

5.13.3.2.2.2b
' The form of the external input field is the same as for the F con-
version.

5.13.3.2.2.2c
The form of the external output field for a scale factor of zero is:

[&J i.lj_: ’ »~§‘V“x . -,fI QXP [?m n redd "j’j

where:
+ signifies a plus or a minus.

X1sXp...X _sub_ d are the d most significant rounded digits of the
value of the data to be produced.

~ exp is a decimal exponent of one of the following forms:

Field Absolute Value Form of
Descriptor . of Expoment o Exponent
e
Dw-d o _L_99 Dty 1y, oOr E‘iy‘lyz-
99 ¢ |exp] & 999 | iyi§2§§1Y2Y3
Eg'gﬁgv v : L 10**e - 1 Ety,y5...y_sub_e
Ew-dDe £10%*e - 1 ' Diylyz...y_sub_é

y is a decimal digit; the sign in the exponent is‘required.

5.13.3.2.2.24

The scale factor k controls the decimal normalization between the

number part and the exponent part (13.3.1). If d«(&f<0 there will

be exactly -k leading zeros and d+k significant aiglts after the de01mal
point. - If 0<k<d + 2, there will be exactly k significant digits

to the left of the deCLmal point and d-k+1 significant digits to the
rigth of the decimal point.

5.13.3.2.2.3 G Conversion

The numeric field descriptor Gw-d indicates that the external field
occupies w positions with 4 31gn1f1cant digits. If the list item is
real, the value appears, or is to appear, internally as a real datum.
If the list item is double prec1s1on, the value appears, or is to ap-
pear, internally as a double precision datum.

5.13.3.2.2. 3b
Input processing is the same as for F conversion.

5.13.3.2.2.3c

The method of representation in the external output field depends on
the magnitude of the real datum being converted. Let N be the mag-
nitude of the internal datum. The value of N determines the con-
version as follows: : :

Magnitude C
of Datum Equivalent Conversion
0.1SN<1 | | | F(w-4).d,4X
1< NK<10 ' F(w-4).(d-1),4X
10%* (d-2) € N < 10%*(d-1) F(w-4).1,4%
L 10%*(d-1) g N < 10%*d F(w-4).0,4X
Otherwise ‘ | sEw.d

Note that the effect of the scale factor is suspended unless the
‘magnitude of the datum to be converted is outside of the range that
permlts effective use of F conversion. :

10%

Note that the effect of the scale factor is suspended unless the mag-
nitude of the datum to be converted is outside of the range that per-
mits effective use of F conversion.

5.13.3.2.3 Complex Conversion

Since a complex datum consists of a pair of separate real data, the .
conversion is specified by two successively interpreted F, E, G, or
D field descritprs. The first of the pair supplies the real part;
the second supplies the imaginary part. The two field descriptors
may be different. :

5.13.3.3 Logical Conversion

The logical field descriptor Lw indicates that the external field oc-
cupies w positions and that the list appears, or is to appear, in-
ternally as a logical datum. :

5.13.3.3b

The external input field must consist of optional blanks followed by
a T for true or F for false. The T or F may be followed by optional
characters. '

5.13.3.3c

The external output field consists of w-1 blanks followed by a T or
F as the value of the internal datum is true or false, respectively.

5.13.3.4 Chafacter Field Descriptors

Character data may be transmitted by means of two field descriptors,
the apostrophe field descriptor and the A‘:E] field descriptor.

(1) The apsotrophe field descriptor is a character string enclosed
in apostrophes. It causes characters to be read into, or written
from, the enclosed characters (including blanks) in the format
specification itself. Each apostrophe within the character string
must be written in the program as two consecutive apostrophes
(with no intervening blanks) but must be represented internally
by a single apostrophe. An apostrophe in input data to be read
into a format specification must be represented by one apostrophe.

(2) The A{ w] field descriptor causes characters to be read into, or
written from, a specified list item of type character. The list
item appears, or is to appear, internally as a character datum.
Note that the Ah field descriptor may also be used for Hollerith
information when the list item is not of type character.

5.13.3.4b

If a field width w is specified with the A field descriptor, the ex- -
ternal field consists of w characters. If the field width w is not
specified with the A field descriptor, the length len of the charac-
ter list item is used as the field width and the external field

icq

field consists of len characters.

5.13.3.4c

Let len be the length of a character list item. If the specified
field width w for A input is greater than or equal to len, the right-
most len characters will be taken from the external input field. If
the specified field width is less than len, the w characters will
appear left-justified with len-w tralllng blanks in the internal rep-
resentation.

5.13.3.44

If the specified field width w for A output is greater than len, the
external output field will consist of w-len blanks followed by the
len characters from the internal representation. If the specified
field is less than or equal to len, the external output field will
consist of the leftmost w characters from the internal representation.

5.13.3.5 Hollerith Field Descriptors

Hollerith information may be transmitted by means of two field de-
scrlptors, nH, and Aw.

(1) Tho nH field descriptor causes Hollerith information to be read
into, or written from, the n characters (1nclud1ng blanks) fol-
lowing the H of the nH field descriptor in the format specification
itself.

(2) The Aw field descriptor causes w Hollerith characters to be’ read
into, or written from, a spec1f1ed list item.

5.13.3.5b

Let a be the maximum number of characters that can be stored in a
single storage unit at one time. If the field width specified for

A input is greater than or equal to g, the rightmost a character will
be taken from the external input field. 1If the field width is less
than a, the w characters will appear left-justified with a-w tralllng
blanks in the internal representation.

5.13.3.5c :

If the field width specified for A output is greater than ‘a, the ex-
ternal output field will consist of w-a blanks, followed by the a char-
acters from the internal representation. If the field width is Iess
than or equal to a, the external output field will consist of the

leftmost w characters from the internal representation.

5.13.3.5 X Field Descriptor

The nX field descriptor causes n characters to be skipped from the
current position. If n is positive, sklpplng is in the forward di-
rection. If n is negative, sklpplng is in the backward direction.
If a backward skip would result in a zero or negative character posi-
tion within the record, the effect is a skip to the first character
position of the record.

5.13.3.6b
On input, a skip beyond the end of a record is permitted if no char-
acters are transmitted from such character positions.

5.13.3.6c

On output, a skip over character pos1tlons that have not prev1ously
been filled results in those positions being filled with the charac-~
ter blank. The result is as though the entire record were initially
filled with blank chafacters. If the X field descriptor causes a
skip to position ¢, it causes the length of that output record to be
~at least c-1 characters.

5.13.3.7 T Field Descriptor

The Tc field descriptor indicates that the transmission of the next
‘character from or to a record is to occur at the cth character position.
The first character position of a record is position one. The T field
descriptor can be used to move forward or backward from the current
position in a record. Input fields can be reread and output fields
can be replaced with new characters by using the T field descriptor.
For input records, a move beyond the end of a record is permitted if
no characters are transmitted from such character positions. For
output records, the result is as though the entire record were ini-
tially filled with blank characters. The T field descriptor causes
the length of the output record to be at least c-1 characters.

5.13.3.8 S Field Descriptor

The S field descriptor may be used to control optional plus signs in
numeric external output fields. At the beginning of execution of

each formatted output statement, the processor has the option of pro-
ducing optional plus signs in numeric output fields. If a +S field
descriptor is encountered in a format specification, the processor
must produce a plus sign in any subsequent position that normally con-
tains an optional plus sign. If a -S field descriptor is encountered,
the processor must not produce a plus sign in any subsequent position
that normally contains an Optional plus sign. If an S field descrip-
tor without a precedlng sign is encountered, the option of producing
optional plus signs is restored to the processor.

5.13.3.8b

The S field descrlptor has no effect during the execution of 1nput
statements.

5.13.4 Interaction Between I/0 List and Format

The beginning of execution of a formatted READ or formatted WRITE
statement initiates format control. Each action of format control
depends on information jointly provided (1) by the next field de-
scriptor or field separator obtained from the format specification and
(2) by the next item in the input/output list, at least one field
descriptor of F, E, G, D, I, L, or A must exist in the format spe-

cification.

'5.13.4b |
Except for repetltlon of groups, the format spec1f1cat10n is inter-
preted from left to right.

5.13.4c '

The next record is read (1) at the beginning of execution of a for-
matted READ statement, (2) at each slash encountered under format
control, and (3) when format control encounters the end of the format
specification kfore all items in the input list have been assigned
values. The 301nt action of a READ statement and a format specifica-
tion may not requlre more characters of a record than the record con-
tains.

5.13.4d '

A next record is written (1) at each slash encountered under format
control, (2) when the end of the format specification is encountered
with more data remaining to be written, and (3) at the completion

of execution of the formatted output statement. A record is written
at these occurrences even if no characters have been transmitted

to the record.

5.13.4e o :
To each I, F, E, G, D, A, or L basic field descriptor interpreted in
a format specification, there corresponds one item specified by the
input/output list, except that a complex item requires the interpre-
tation of two F, E, D, or G basic field descrlptors. To each H, X,,
T, S, or character fleld descriptor, there is no corresponding item
- specified by the input/output list, and format control communicates
information directly with the record. Whenever a slash is encountered,
the format specification demands that a new record start or the pre-
ceding record terminate. During a READ operation, any unprocessed
characters of the current record will be sklpped whenever the next
‘record is read

5. 13 4f

Whenever format control encounters an I, F, E, G, D, A, or L basic i
field descriptor in a format spec1f1catlon, it determines if there is
a corresponding item specified by the input/output list. If there is
such an item, it transmits appropriately converted information between
the item and the record and then format control proceeds. If there

is no corresponding item, format control terminates.

5.13.4qg :

Whenever format control encounteres a colon, it determines if there
are any items remaining in the input/output list. If no items remain
format control terminates. If items remain, format control proceeds
to the next fleld descrlptor. ' 1

5.13.4h ' ‘
If format control proceeds to the rightmost parenthesis of the format
specification, a test is made to determine if another list item is

. specified. If another list item is not specified, format control ter-
minates. However, if another list item is specified, format control
demands that a new record start and format control reverts to the be-

ginning of that optlonally repeated format group termlnated by the
last preceding right parenthesis, or, if non exists, then format con-
trol reverts to the first left parenthesis of the format specifica-
tion. If format control reverts back from the rightmost parenthesis,
the reused portion of the format specification must contain at least
one F, E, G, D, I, L, or A field descriptor. Note that reversion of
format control, of itself, has no effect on the scale factor.

5.14 PROGRAM PUSH, AND PULL STATEMENTS

A PROGRAM statement 1s of the form:
PROGRAM pgm

where pgm is the symbollc name of the main program in Wthh the
PROGRAM statement appears.

5.14b

If this statement appears in an executable program, 1t must be the
first statement of the main program. It is not required to appear.
The symbolic name pgm must not be the same as the name of any entity
within the main program and it must not be the same as the name of
any external procedure, entry, block data subprogram, or common block,
in the same executable program. :

5.14c
‘A main program may not be referenced from a subprogram or from itself.

5.14.2 A PUSH statement is of the form:

——y

PUSH (stacknam, exp f‘ERR =8,)

where stacknam is a stack defined in a STACK statement
exp is an expre331on that is the same type as stacknam or can be
converted to it.

S is a statement label for the error specification 1f the stack

overflows.

5.14.2b - ;
The first argument, stacknam, is a push-down stack and the PUSH state-
ment is the manner in which an entry (exp) is loaded into the stack.

'5.15 'DEFINITION'AND‘REFERENCE'OF'SUBROUTINES AND FUNCTIONS

5.15.1 TIntroduction

There are four categories of procedures:

(1) statement functions
(2) intrinsic functions

(3) external functions
(4) subroutines

5.15.1b
Statement functions, intrinsic functions, and external functions are

referred to collectlvely as functions.

5.15.1c
There are two categories of external functions:

(deleted)
(1) function subprograms
(2) external functions defined by some other means

5.15.1e
Subroutines and external functions are referred to collectlvely as

external procedures.

5.15.1f
- If an executable program contains a function or subroutine subprogram, tha

subprogram may be referenced within any other program unit of that exe-
cutable program. A subprogram or main program may not reference itself
either directly or indirectly. If an executable program contains an ex-
ternal procedure defined by some means other than as a subprogram, that
external procedure may be referenced within any program unit of that exe--
cutable program. Intrinsic functions may be referenced in any program uni
of an executable program except a block data subprogram. A statement
function may be referenced only in the program unlt that contalns the
statement function definition.

5.15.1g
Type rules for the names of functions are given in (4.1.2).

5.15.5 Statement Functions

A statement function is defined internally to the program unit in which
it is referenced. It is defined by a single statement similar in form
to an arithmetic, a logical, or a character assignment statement.

'5.15.2b o
A symbolic name is a statement functlon name in a program unlt 1f and

only if it meets all three of the follow1ng conditions:

(1) A functlon deflnlng statement (15.17) is present for that symbollc nam

(2) Every appearance of the name, except in a type—statement, is im-
mediately followed by a left parenthesis.

(3) It does not appear in an EXTERNAL statement nor in an array declarator

5.15.3 Intrinsic Functions

The symbolic names of the intrinsic functions (Table 3) are predefined
by the processor and have a special meaning and type.

5.15.3b
A symbolic name is an intrinsic function name in a program if and only

£

ii

if it meets all four of the following conditions:
(1) The name appears in the Symbolic Name column of Table 3.

(2) It does not appear in an EXTERNAIL statement nor is it an array

name, a character variable name, a subroutine name, or a statement-
functlon name.

_(3) The symbolic name does not appear in a type- statement of type
different from the function type specified in Table 3.

external procedures.

5.15.1f

If an executable program contains a function or subroutine subprogram,
that subprogram may be referenced within any other program unit of
that executable program. A subprogram or main program may not refer-
ence itself either directly or indirectly. If an executable program
contains an external procedure defined by some means other than as a
subprogram, that external procedure may be referenced within any pro-
gram unit of that executable program. Intrinsic functions may be
referenced in any program unit of an executable program except a
block data subprogram. A statement function may be referenced only
in the program unit that contains the statement function definition.

5.15.1qg
Type rules for the names of functions are glven in (4.1.2).

5.15.5 Statement Functions

A statement function is defined internally to the program unit in which
it is referenced. It is defined by a single statement similar in
form to an arithmetic, a logical, or a character assignment statement.

5.15.2b :
A symbolic name is a statement function name in a program unit if
and only if it meets all three of the following conditions:

(1) A functlon defining statement (15.17) is present for that symbollc
name.

(2) Every appearance of the name, except in a type-statement, is im-
mediately followed by a left parenthesis.

(3) It does not appear in an EXTERNAL statement nor in an array declara-
tor.

5.15.3 Intrinsic Functions

The symbolic names of the intrinsic functions (Table 3) are predeflned
by the processor and have a special meaning and type.

5.15.3b
A symbolic name is an intrinsic function name in a program unit if
and only if it meets all four of the following conditions:

(1) The name appears in the Symbolic Name célumn of Table 3.
(2) It does not appear in an EXTERNAL statement nor is it an array
name, -a character varlable name, a subroutine name, or a state-

ment function name.

(3) The symbolic name does not appear in a type-statement of type
different from the function type specified in Table 3.

(4) Every appearance of the symbolic name (except in a type-state-
ment as described prev1ously) is immediately followed by an ac-
tual argument list enclosed in parentheses.

. The use of an intrinsic function in a program of an .executable pro-

gram does not preclude the use of the same symbolic name to identi-
fy some other entity in a different program unit of that executable
program. : :

5.15.3c

Intrinsic functlons that cause conversion of an entity from one type
to another type provide the same effect as the 1mp11ed type conver-
sion 1n assignment statements (Table 2).

5.15.4 External Functions

An external function is defined externally to the program unit that
references it.

5.15.4b
~There are two kinds of external functions: function subprograms and
functions defined by some means other than FORTRAN.

5.15.4c '
A function subprogram is an external function that is deflned by
FORTRAN statements and is headed by a FUNCTION statement.

5.15.44
A symbolic name is an external function name if it:

- (1) -appears immediately follow1ng the word FUNCTION in a FUNCTION
statement, or

(2) appears immediately following the word ENTRY in an ENTRY state-
ment within a function subprogram, or

(3) is not an array name, a character variable name, a statement
function name, an intrinsic function name, or a subroutine name
and appears immediately followed by a left parenthesis on every
occurrence except in a type-statement, in an EXTERNAL statement,
as an actual argument, or as a dummy argument in a FUNCTION, a
SUBROUTINE, or -an ENTRY statement. There must be at least one
such appearance in the program unit in which it is so used.

5.15.5 Generic Functions

‘Table 5 specifies a list of generic function names and the permlss1-
ble types of arguments and types of results. For those generic func-
tions that require more than one argument, all arguments must be of
the same type. :

Table 5
GENERIC FUNCTIONS

: Type of Type of
Symbolic Name Argument Result
. ABS Integer Integer
. : Real Real

Double Double
Complex Real
INT | Real Integer
' : Double Integer
NINT = Integer Integer
Real Integer
Double Integer
AINT and ANINT Real Real
Double Double
MOD, MAX, MIN, SIGN, and DIM Integer Integer
: Real Real
Double Double
EXP, LOG, SIN, COS, and SORT Real Real
. - Double Double
Complex Complex
LOG10, TANH, ATAN, ATAN2, ASIN, Real Real
"ACOS, SINH, COSH, and TAN Double Double

5.15.5b

Some of the intrinsic function names are also generic function names
that can be used with several different types of arguments and, in

most cases, the result of the function is the same type as the actual

argument. MAX and MIN are generic function names for choosing the
- largest value and choosing the smallest value respectively, but are

not the names of any specific intrinsic functions. LOG and LOG1l0 are
generic names for the natural logarithm and the common logarithm re-
spectively, but are not the names of any specific basic external func-
tions. NINT and ANINT are generic names for the nearest integer func-
tion; there are no specific function names for the nesrest integer
function. The other generic functions have the same mathematical def-
inition as specified in Table 34 for the intrinsic function of the
same name. :

5.15.5¢c -

If a symbolic name in Table 5 appears in a type-statement within a
program unit, that name loses its automatic typing property in that
program unit. If that symbolic name appears in Table 3, it can still

be used to reference a specific intrinsic function if the four condi-

" tions specified in 15.3 are met. (deleted) (deleted) (deleted) (deleted)

5.15.54

A name in an EXTERNAL statement must be the name of a specific exter-
nal procedure; it must not be a generic function name that is not
defined as a specific external procedure also. ' :

5{15.6 Subroutines

A subroutine is defined externally to the program unit that references
it. A subroutine defined by FORTRAN statements and headed by a-
SUBROUTINE statement is called a subroutine subprogram.

5.15.6b
A symbolic name is a subroutine name if it appears:

(1) immediately following the word SUBROUTINE in a SUBROUTINE state-
ment, or _ ’ ' o

>(2) immediately following the word ENTRY in an ENTRY statement within
a subroutine subprogram, or

(3) immediately following the word CALL in a CALL statement.

5.15.7 Dummy and Actual Arguments

Dummy and actual arguments provide a menas of communication between
procedures or between a main program and a procedure.

5.15.7.1 Dummy Arguments

Function subprograms, subroutine subprograms, and statement functions
use dummy arguments to indicate the types of actual arguments and
whether the actual arguments will be variables (or array elements),
arrays, subroutines, or external functions. Each dummy argument

must be used within a function subprogram or subroutine subprogram as
though it is either a variable, an array, a subroutine, or an external
function.

5.15.7.1b :

At the execution of a function or subroutine reference, an association
is established between the corresponding dummy arguments and actual
arguments. The first dummy argument becomes associated with the

first actual argument, the second dummy argument becomes associated
with the second actual argument, etc. All appearances of a dummy
argument within a function or subroutine become associated with the
actual argument when the function or subroutine is referenced. Except
when the actual argument is a subroutine name or a Hollerith constant,
a valid association occurs only if the type of the actual argument is
the same as the type of the corresponding dummy argument. A Hollerith
- constant must not become associated with a character dummy argument.
Argument association can be carried through more than one level or pro-
cedure reference. A valid association exists at the last level only
if a valid association exists at all intermediate levels. Argument
association within a program unit terminates at the execution of a
RETURN or END statement in that program unit.

- 5.15.7.1c

The number of dummy arguments in a procedure must be the same as the
number of actual arguments in each reference to that procedure or
procedure entry.

5.15.7.1d

- Dummy argument names may appear wherever an actual name of the same
class and type could appear except where they are explicitly prohitited.
They are not allowed in EQUIVALENCE, DATA, PARAMETER, SAVE, or COMMON
statements except as a common block name. A dummy argument name can-
not appear as the entry name in an ENTRY statement. Integer dummy
arguments may also appear in adjustable dimensions in dummy array
declarators. Although dummy arguments are not actual variables, ar-
"rays, etc., each dummy argument is herein considered to be elther a v
variable, array, subroutine, or external function.

5.15.7.1le

- If a dummy argumebt is a variable, the associated actual argument must
be a variable, an array element, an expression, or a Hollerith con-
stant.

5.15.7.1f

If a dummy argument is an array, the associated actual ‘argument must
be either an array or an array element. If the actual argument is an
array, the length of the dummy argument array must be no greater than
the length of the actual argument array and each actual argument array
element becomes associated with the dummy argument array element that
has the same subscript value as the actual argument array element.

5.15.7.1g ' ’

If the actual argument is an array element, the 1ength of the dummy
argument array must be less than or equal to the length of the actual
argument array plus one minus the value of the subscript of the array
element. When an actual argument is an array element with a subscript
value of p, the dummy argument array element with a subscript value of
g becomes associated with the actual argument array element that has a
subscript value of p+q-1 (Table 1). :

Within a program unlt, the array declarator given for an array pro—
vides all array declarator information needed for that array in an
execution of that program unit. The number and size of dimensions
in an actual argument array declarator may be different from the
number and size of the dimensions in an associated dummy argument
array declarator.

5.15.7.1h
If a dummy argument is a subroutine, the associated actual argument
must be a subroutine.

5.15.7.1i :

If a dummy argument is an external function, the associated actual
argument must be an external function. A dummy argument that becomes
associated with an external function never has any automatic typing
property, even if the dummy argument name appears in Table 5. There-
fore, the type of the dummy argument must agree with the type of the
- result of all specific actual arguments that become associated with
the dummy argument. Thus, if a dummy argument name is used as an
external function and that name also appears in Table 3, 4, or 5, the
processor—deflned function corresponding to the dummy argument name
is not available for referencing within the subprogram. '

5.15.7.1j ~

If a dummy argument that is an array or a variable becomes defined in
a referenced subprogram, the associated actual argument must be a
variable, an array element, or an array.

5.15.7.11

If a dummy argument is of type character, the associated actual argu-
ment must be of type character and the length of the dummy argument
must be less than or equal to the length of the actual argument. If
the character dummy argument is an array, the restriction on length is
for the entire array and not for each array. element. When the length
of a character dummy argument is less than the length len of an as-
sociated actual argument, the leftmost len characters of the actual
argument are associated with the dummy argument.

5.15.7.1n :

If a subprogram reference causes a dummy argument in the referenced
subprogram to become associated with another dummy argument in the ref-
erenced subprogram, a definition of either dummy argument during exe-
cution of that subprogram is prohlblted. For example, if a sub-
routine is headed by

SUBROUTINE X (A,B)
and is referenced by

CALL X (c,c) |
then the dummy erguments A and B each become associated with the éame
actual argument C and therefore with each other. The above rule means

that neither A nor B may become defined during execution of sub-
routlne X.

5.15.7.11

If a subprogram reference causes a dummy argument to become a55001ated
with an entity in a common block in the referenced subprogram, a defi-
nition within the subprogram of either the dummy argument or the
entity in the common block is prohibited. For example, if a sub-
routine contains the statements:

SUBROUTINE X (A)
COMMON C

and is referenced by a program unit that contains the statements:

COMMON B
CALL X (B)

then the dummy argument A becomes associated with the actual argument
B which is associated with C which is in common. The above rule
me#fs that neither A nor C may become defined during execution of

the subroutine X.

5.15.7.2 Actual Arguments

Actual arguments appear in CALL statements for subroutine references
and in expressions for function references. Actual arguments specify
the variables, array elements, arrays, subroutines, and external func-
tions that are to be associated with the dummy arguments for a particu-
lar reference of a subroutine or function. Actual arguments may be
constants and expressions if the associated dummy argument is a vari-
able that is not deflned during execution of the referenced external
procedure. :

5.15.7.2b

The number of actual arguments must be the same as the number of dum-
my arguments in the procedure or entry in the procedure referenced.
The type of each actual argument must agree with the type of its as-
sociated dummy argument except when the actual argument is a Hollerith
constant or a subroutine name.

5.15.7.2c
If an actual argument is a constant, a variable, or an expression,
the associated dummy argument must be a variable.

5.15.7.2e
If an actual argument is an array element, the .associated dummy argu-
ment must be elther a variable or an array.

5.15.7.2f

If an actual argument is an external procedure, the associated dummy
argument must be an external procedure. If the associated dummy
argument appears in a type-statement or is referenced as a function,

the actual argument must be a function. If the dummy argument is refer-
enced as a subroutine, the actual argument must be a subroutine and
cannot be typed or referenced as a function.

5.15.7.2g
Note that it may not be possible to determine in a given program unit

5.15.7.11

If a subprogram reference causes a dummy argument to become assoc1ated
with an entity in a common block in the referenced subprogram, a defi-
nition within the subprogram of either the dummy argument or the
entity in the common block is prohibited. For example, if a sub-
routine contains the statements:

SUBROUTINE X (A)
COMMON C

and is referenced by a program unit that contains the statements:

COMMON B
CALL X (B)

then the dummy argument A becomes associated with the actual argument
B which is associated with C which is in common. The above rule
me#8s that neither A nor C may become defined during execution of

the subroutine X.

5.15.7.2 Actual Arguments

Actual arguments appear in CALL statements for subroutihe references
and in expressions for function references. Actual arguments specify
the variables, array elements, arrays, subroutines, and external func-
tions that are to be associated with the dummy arguments for a particu-
lar reference of a subroutine or function. Actual arguments may be
constants and expressions if the associated dummy argument is a vari-
able that is not defined during execution of the referenced external
procedure.

5.15.7.2b

The number of actual arguments must be the same as the number of dum-
my arguments in the procedure or entry in the procedure referenced.
The type of each actual argument must agree with the type of its as-
sociated dummy argument except when the actual argument is a Hollerith
constant or a subroutine name.

5.15.7.2c
If an actual argument is a constant, a variable, or an expression,
the associated dummy argument must be a variable.

5.15.7.2e
If an actual argument is an array element, the associated dummy argu-
ment must be either a variable or an array.

5.15.7.2f

If an actual argument is an external procedure, the associated dummy
argument must be an external procedure. If the associated dummy
argument appears in a type-statement or is referenced as a function,

the actual argument must be a function. If the dummy argument is refer-
enced as a subroutine, the actual argument must be a subroutine and
cannot be typed or referenced as a function. ‘

5.15.7.29g
Note that it may not be possible to determine in a given program unit

whether an argument is a function or a subroutine. If the external
procedure name appears only in an EXTERNAL statement and in an actual
or dummy argument list, it is not possible to determine whether the
symbolic name is a subroutine or function by examination of that pro-
gram unit alone.

5.15.7.2h

An external procedure must be defined at the time it is used as an ac-
tual argument in a reference to another procedure. Intrinsic functlons
and statement functions must not be used as actual arguments.

5.15.7.21i : '
If an actual argumeht is a constant or an expression, the associated
dummy argument must not be defined within the subprogram.

5.15.7.23

If an actual argument is an array element name, its subscript is evalu-
ated just before the association of arguments takes place. Note that
the value of the subscript remains constant as long as that associa-
tion of arguments persists, even if the subscript contains variables
whose values change during the association.

5.15.7.2k

If an actual argument becomes associated with a dummy argument that
appears in an adjustable dimensionor appears in an adjustable length
in a character type-statement, that actual argument must be defined
~as an integer value at the time the procedure is referenced.

5.15.7.21

The number of characters in an actual argument of type character must
be greater than or equal to the number of characters in the assoc1ated
dummy argument.

5.15.8 Common Storage Areas

The COMMON statement provides an alternate means of communication be-
tween procedures or between a main program and a procedure. The vari-
ables and arrays in a common block may be defined and referenced in

all subprograms that contain a declaration of that common block. Be-
cause association is by storage units rather than by name, the names
of the variables and arrays may be different in the different subpro-
grams. A reference to a datum in a common block is proper if that
datum is in a defined state of the same type as the type of the name
used to reference that datum. Either part of a complex datum can also
be referenced as a real datum. A Hollerith constant can be referenced
by a name of any type, except character. No other differences in type
between definition and reference are permitted. Integer variables that
have been assigned to statement labels cannot be referenced in any pro-
gram unit other than the one in which they were assigned (10.3).

5.15.8b

In a subprogram that has declared a named-common block, the entities in
that block remain defined after the execution of a RETURN or END state-
ment if a common block of the same name has been declared in any program
unit that is currently referencing the subprogram either directly or

indirectly. Otherwise, such entities become undefined at the execution .
of a RETURN or END statement except for those that were initially de-
fined and have neither been subsequently defined nor undefined and
--those that are specified by SAVE statements. Execution of a RETURN

or END statement does not cause undefinition of entities in blank com-
mon or in any named common block that appears in the main program.

5.15.8c

Note that common blocks may also be used to reduce the total number of
storage units or character storage units required for an executable
program by causing two or more subprograms to share some of the same
storage units or character storage units. This sharing is permitted if
the rules for the definition and referencing of data are not violated.

5.15.9 CALL Statement and Subroutine Reference

A CALL statement is used to reference a subroutine.

5.15.9b
A CALL statement is of the form:

Carn sub [(al,e7.. .)3

where: sub is the symbolic name of a subroutine or an entry in a sub-
routine. '

a2 is an actual argument.

5.15.9C T

Execution of a CALL statement references the subroutine designated by
sub. Return of control from the referenced subroutine completes ex-
exution of the CALL statement.

5.15.94

" A subroutine is referenced by a CALL statement. The actual arguments,
which constitute the argument list, must agree in order, number, and
type with the corresponding dummy arguments in the defining subprogram.
The use of a Hollerith constant or a subroutine name as an actual ar-
gument are exceptions to the rule requiring agreement of type. An ac-
tual argument in a subroutine reference must be one of the following:

(1) A Hollerith constant

(2) A variable name

(3) An array element name

(4) An array name

(5) Any other expression
~(6) The name of an external procedure

5.15.9e . ‘
When a CALL statement is executed, the referenced subroutine must be
available to the program unit in which the CALL statement appears.

5.15.10 Function Reference

A function reference is of one of the forms.

'Fun(a nal..)
;un()
where: fun is the symbolic name of a function or an entry in a function

a is an actual argument

5.15.10b v
Execution of a function reference in an expression references the
function designated ty fun. Note that function references appear only

in expressions.

5.15.10c

The type of the result of a function reference is the same as the type
of the function or entry name. However, the type of the result of a
generlc function is specified in Table 5. Note that the type of a
generic function usually depends upon the type of one or more of its

arguments.

5.15.10.1 Referencing External Functions

An external function is referenced by using its reference as a primary
in an arithmetic, a logical, or a character expression. Execution of
an external function reference results in an association of actual ar-
guments with the corresponding dummy arguments in the referenced func-
tion. The resultant value is then made available to the expre551on
that contained the function reference.

5.15.10.1b

The actual arguments, which constitute the argument list, must agree
in order, number, and type with the correspondlng dummy arguments in
the referenced function. An actual argument in an external function
reference must be one of the following:

(1) A variable name

(2) An array element name

(3) An array name

(4) Any other expression except a Hollerith constant
(5) The name of an external procedure

5.15.10.1c¢

When referen01ng an external function subprogram, the type of the ref-
erencing name must agree with the type declared for that name in the
function subprogram; and for character functions, the length must also

agree.

5.15.10.1d
Arguments for which the result of an intrinsic function is not mathe-
matically defined or exceeds the numeric range of a processor causes

the result of the function to be undefined. The fresult of the basic
external functions ALOG, DLOG, ALOGl0, and DLOG1l0 is undefined for zero
or negative arguments. The result of CLOG is undefined for the complex
argument (0.,0.). The result of SORT and DSORT is undefined for neg-
ative arguments and the result of DMOD is undefined when the second
argument is zero. The result of ASIN, DASIN, ACOS, and DACOS is un-
defined for arguments whose absolute value is greater than one.

15.10.2 Referencing Statement Functions

A statement functlon is referenced by using its reference as a primary
‘in an arithmetic, a logical, or a character expression. Execution of
a statement function reference results in an association of actual
argumentw with the corresponding dummy arguments in the expre551on of
the function definition, and an evaluation of the expre851on. The re-
- sultant value is then made available to the expression that contained
the function reference.

The actual arguments, which constitute the argument list, must agree
in order, number, and type with the corresponding dummy arguments.
An actual argument in a statement function reference must be one of
the following:

(1) A variable name

(2) An array element name
(3) Any other expression except a Hollerith constant.

5.15.10.3 Referencing Intrinsic Functions

An intrinsic function is referenced by using its reference (15.10) as
a primary in an arithmetic or a logical expression. Execution of

an intrinsic function reference results in the actions specified in
Table 3 based on the values of the actual arguments. The resultant
value is then made available to the expression that contained the
function reference.

The actual arguments, which constitute the argument list, must agree

in type, number, and order with the specification in Table 3 or in

- Table 5 and may be any expression of the specified type. The intrinsic
functions AMOD, MOD, SIGN, ISIGN, and DSIGN are not defined when the
value of the second argument is zero. If the first argument of SIGN,
ISIGN, or DSIGN is zero, the result is always zero and it is neither
positive nor negative.

5.15.11 RETURN Statement

A RETURN statement causes return of control to the referencing pro-
gram unit.

A RETURN statement is of the form:

RETURN

5.15.11c .

Execution of a RETURN statement terminates the reference of a procedure
subprogram. This statement may only appear in a function subprogram
or a routine subprogram. Such subprograms may contain more than one
RETURN statement. A RETURN statement need not appear in a subprogram.

5.15.11d o
Execution of this statement in a subroutine subprogram causes return of
control to the current referencing program unit.

5.15.11e . -
Execution of this statement in a function subprogram causes return of
control to the current referencing program unit. The value of the

function must be defined and that value is then made available to the

referencing program unit.

5.15.11f :

If an initially defined entity is in a subprogram and is not in a named
common block, the completion of execution of a RETURN statement in that
subprogram causes all such entities and their associates at that time
(except for initially defined entities that have neither been subse-
quently defined nor undefined) to become undefined. 1In this respect,

it should be noted that the association between dummy arguments and ac-
tual arguments is terminated at the beginning of execution of the RETURN
statement. , :

5.15.11qg

If a subprogram contains a named common block name that is not contained
in any program unit currently referencing the subprogram directly or
indirectly, the execution of a RETURN statement in the subprogram causes
undefinition of all entities in the block (and their associates) ex-
cept for initially defined entities that have neither been subsequently
~defined nor undefined and for entities that are specified by SAVE state-
ments. Note that if a named common block appears in a main program,
then its entities do not become undefined at the execution of a RETURN
statement in subprograms that contain the same named common block.

5.15.11h |
Again, it should be emphasized, the redefinition of an initially de~
fined entity in a subprogram sometimes results in an undefinition of
that entity at the execution of a RETURN statement. '

5.15.111 _ ,
Execution of an END statement in a subprogram has the same effect as
execution a RETURN statement in that subprogram.

5.15.117 A

In the execution of an executable program, a procedure subprogram may
not be referenced twice without the execution of a RETURN or END state-
ment in that procedure having intervened.

5.15.12 SUBROUTINE Statement

A SUBROUTINE statement is of the form:
SUBReUT T IE sob L AA T, Y|

where: sub is the symbolic name of the subroutine to be defined.

a , called a dummy argument, is either a variable name, .an
array name, or an external procedure name.

5.15.13 Subroutine Subprogram Restrictions

Subroutine subprograms are constructed as specified in 3.5 with the
following restrictions:

(1) The symbolic name of the subroutine must not appear in any state-
ment in this subprogram except as the symbolic name of the sub-
routine in the SUBROUTINE statement itself.

(2) The symbolic names of the dummy arguments may hot appear in
EQUIVALENCE, COMMON, PARAMETER, SAVE, or DATA statements in the
subprogram,

(3) The subroutine subprogram may define one or more of its arguments
so as to return results.

(4) The subroutine subprogram may contain any statements except BLOCK
DATA, FUNCTION, PROGRAM, another SUBROUTINE statement, or any
statement that directly or indirectly references the subroutine
being defined.

5.15.14 FUNCTION Statement

A FUNCTION statement is of one of the forms:
[tye]l Funerzen Lun [1)]
Ctypl Fuowrctrsow Fonm Cdtadl,,)

}
LV IS

where: typ is either INTEGER, INTEGER*2, REAL, DOUBLE PRECISION,
' COMPLES, LOGICAL, CHARACTER (*len , or BIT

len 1is the length of the result of the character function

fun is the symbolic name of the function to be defined

a , called a dummy argument, is either a variable name, an
array name, or an external procedure name.

5.15.15 Function Subprogram Restrictions

Function subprograms are constructed as specified in 5.3.5 with the
following restrictions:

(1) The symbolic name of the function or an associated entry name must
also appear as a variable name in the defining subprogram. During
every execution of the subprogram, this variable must be defined
and, once defined, may be referenced or redefined. The value of

this variable at the time of execution of any RETURN or END state-
ment in this subprogram is the value of the function.

(2) The symbolic name of the function must not appear in any nonexe-
: cutable statement in this program unit, except as the symbolic name
of the function in the FUNCTION statement or in a type-statement.

(3) The symbolic names of the dummy arguments may not appear in
EQUIVALENCE, COMMON, PARAMETER, SAVE, or DATA statements in the
function subprogram.

(4) The function subprogram may define one or more of its arguments so
as to return results in addition to the value of the function.

(S) The function subprogram may contain any statements except BLOCK
DATA, SUBROUTINE, PROGRAM, another FUNCTION statement, or any
statement that directly or indirectly references the function being
defined.

5.15.16 ENTRY Statement

An ENTRY statement permits a reference of a subprogram to start with
any executable statement within that subprogram.

5.15.16b
An ENTRY statement is of one of the forms:

ENTRY en [k)]
ENTRY en (d [,d] ...)

where: en is the entry name

d , called a dummy argument, is either .a variable name, an
array name, or an external procedure name.

5.15.16c :

The entry name is available for reference in all other program units of
an executable program, but not in the program unit that contains the
entry name in an ENTRY statement. Entry names appearing in ENTRY state-
ments within subroutine subprograms must be referenced as subroutines
and entry names appearing in ENTRY statements within function subpro-
grams must be referenced as external functions. An entry name in an
ENTRY statement within a subroutine is in the same class as a subroutine
and an entry name in an ENTRY statement within a function is in the

same class as an external function. A function entry name can appear

in a type-statement and any entry name can appear in an EXTERNAL state-
ment and can be used as an actual argument. The entry name in an

ENTRY statement cannot be a dummy argument.

5.15.164d '

The ENTRY statement is nonexecutable and may appear anywhere within a
function or subroutine subprogram after the FUNCTION or SUBROUTINE
statement, except within the range of a DO-loop. When an entry name is
. used to reference a subprogram, execution of that subprogram begins with

the first executable statement that follows the ENTRY statement in
which the entry name appears. The ENTRY statement by itself has no
effect on the normal execution sequence. An ENTRY statement may im-
mediately precede an END statement which implies a return to the refer-
encing program unit. : ' o

5.15.16e

The order, number, type, and names of the dummy arguments in an ENTRY
statement may be different from the order, number, type, and names of
the dummy arguments in the FUNCTION statement, SUBROUTINE statement,
and other ENTRY statements in the same subprogram. However, each ref-
erence to a functlon, subroutine, or entry must use an actual argument
list that a-rees in order, number, and type with the dummy argument
list in the corresponding FUNCTION, SUBROUTINE, or ENTRY statement.

5.15.16f

A dummy argument is undefined if it is not currently associated with

an actual argument. An adjustable array is undefined if the dummy
argument array is not currently associated with an actual argument
array or if any of the variables appearing in the adjustable array
declarator are not currently associated with an actual argument or are
not in a common block. Note that there is no retention of argument as-
sociation between one reference of a subprogram and the next reference
of that subprogram.

5.15.16g ‘ :

In a subprogram, a dummy argument name must not appear in an executa-

" - ble statement unless it has appeared prev1ously in a SUBROUTINE,
FUNCTION, or ENTRY statement.

5.15.16h

All entry names w1th1n a function subprogram become associated with

the name of the function subprogram whenever that function subprogram

is referenced by any of its entry names or by its function name. There-

fore, definition of any entry name or the name of the function sub-

program cuases definition of all the associated names that are of

the same type and causes undefinition of all associated names that are

of different type. The function and entry names are not required to '
be the same type, but at the execution of a RETURN or END statement,

- the name used to reference the function subprogram must be defined.

Note that an entry name may not appear in executable statements that

precede thekappearance of the entry name in an ENTRY statement.

5.15.17 Definition of Statement Functions

A statement function is defined by one of the forms:

fun (d-[,d]_;..) = e

fun () = e

where: fun is the symbolic name of the function

is an expression

|®

a is a dummy argument

The relationship between fun and e must conform to the assignment rules
in 5.10.0 and 5.10.2. The d's, if specified, are distinct variable
names, called the dummy arguments of the function. Since these are
dummy arguments, their names, which serve only to indicate type, num-
ber, and order of arguments, may be the same as variable names of the
same type appearlng elsewhere in the program unit.

5.15.17b
Aside from the dummy arguments, operators, and parentheses, the expres-
sion e may contain: :

(1) Non-Hollerith constants

(2) vVariable and array element references

(3) Intrinsic function references

(4) References to previously defined statement functions
(5) External function references

Each variable reference may be either a reference to a dummy argument
of the statement function or a reference to a variable that appears .
within the same program unit that contains the statement function. The
array element references cannot be references to dummy arguments of

the statement function.

5.15.17¢c
The name of a statement function must not appear in an EXTERNAL state-
ment, nor as a variable name or an array name in the same program unit.

5.15.17d v

In a program unit, statement function defining statements must appear
after the specification statements must appear after the specification
. statements and before the first executable statement. :

5.16 BLOCK DATA SUBPROGRAM

Block data subprograms are used to provide initial values for varia-
bles and array elements in named common blocks.

5.16.b

A block data subprogram is nonexecutable. There may be more than one.
block data subprogram in an executable program.

5.16.1 BLOCK DATA Statements

A BLOCK DATA statement is of the form:
BLOCK DATA sub
' where sub is the symbolic name of the block data subprogram.

5.16.1b

The optional name sub must not be the same as the name of any external
procedure, main program, common bl ock, or other block data subprogram
in the same executable program. The name sub must not appear as a

symbolic name in any statement in that subprogram except in the BLOCK
DATA statement.

5.16.1c

This statement may appear only as the first statement of a block data
subprogram.

5.16.2 BLOCK DATA Restrictions

The only statements that may appear in a block data subprogram are
BLOCK DATA, IMPLICIT, PARAMETER, DIMENSION, COMMON, EQUIVALENCE, DATA,
END, and type-statements. Comment lines may appear anywhere before the
last line which must be an END statement (3.5).

5.16.2b ,

If any entity in a given named common block is provided with an initial
~value in such a subprogram, a complete set of specification statements
for the entire block must be included, even though some of the enti-
ties in the block do not appear in DATA statements. More than one.
named common block may have initial values provided for its entities

in a single block data subprogram.

5.16.2c '
The same named common block may not be specified in more than one block
~data subprogram in the same executable program.

SNOILONNI OISNIYINT

Te9yY IO ; _Hmwm 03 oTgnog
Te99 aTgnoa TONS 1 UOIJ UOTSIDAUOD aTbuts
sTqnoq aT1qnoq WIad
Iobojur xabsjur WIaI
Tesy Tesy WIQ Z (¢e’le) urp- Te . 9DUDIDIITA OATITSOJ
sTqnog a1gnoq NDISsa
I9ba3ur Tobo3ul NOISI 0o > %e 3T |Tel-
1e°9 Te9d NOIS Z 0 Ce JT ITe) ubTg 3JO IBFSURI],
I9bon
a9bajur Tesy XIAT T ~UI O3 UOTSIDAUOD XTd
aTqnoqa
aTqnoa I9bojur LY0T4Q IO Tedy o031 xsbalx - :
Teoy I9bajur IYO01d T ~UI WOIJ UOTSIDAUOD - 3eoT1d
aTgqnod aTgnog TNIRA
asbajur Te99 INIRW
Isbajul Ix9bajur ONIW
Teay Te2y TNIWY ;
Teay Isbajur ONIWY r4 (**+lesTe) urw [onTep 3serTeRwWS butsooyp
a1qnod aTqnod TXVYWA
Iobejur Teay TXYNH
asbajur I9bajur OXVW
1e9y Teay TXYWY ’ ,
1e9Y Ioboajur OXYIWY Z A...~Nm.amv Xen snTeA 3issbxeT bursooyd
19bo3ur EEYELR S daow
Teoy Te9y AOWY 2z (¢e ornpou) Te putaepuTtewsy
aTqnoa a1qnoa INIQ
T9bajul a1gqnod INIANI
I9bajur Te9d " INI T 930N o°s
Tesy Tesy INIVY T [e] uoTjeduUNnIy
aTgnod 2Tqnog sdgvdad
I9boajur I9bazurl sSavI
Tesy Tesy sgv T e onTeA 93nTosqy
uoT3lound | jusumbiry surey S3USUMbIY UOT3TUTIOQ T uoT3oUNg OTSUTARUT
Jo adAig OTTOquAS Jo Ioqunpy

*3xed Xxeutbewr 9yl ST Te pue 3xed
Tee9x 9yl ST Ie aIaym (Te’ae)

‘sTeax jyo ated

- poxspio ue se possaadxe ST anTea xaTdwod ¥ (¥)

. UOTSIDAUOD
InoY3lTM jJusunbae syiz JO SnTeA IY3} uanlLSIx
‘quaumbae uotsToaxd STqnop ' YiTM JId pue
‘jusumbie Teax e Y3ITM THNS ‘suoTiouni aylL
*(z oT9el) S3uswolels JuswWUbTISSe UT UOTSIDA
-uoo poTTdwT 9yl Se 30933° suwes ay3z apraoad
o2dX3 xsyzoue 03 adA3 ouo wox A3TIUS Ue JO
UOT3SIDAUOD 9SNED eyl SUOTIOUNI OTSUTIIUT

"2a0oqe (T) UT pouT3ep

mﬁ,ﬂx”wmnmnz 1Te [%e/Te] - Te se pourgop sT

(¢e*Te) qowv 10 QoW uoT3zouUNny butasputewsx a9y

*X Se swes 9yl ST UBTS 9soym pue
X Jo opnjtubew Y3 pPoO9OXd 30U S90p Idpnitubeu

(€)

osoym I9bHo3uT IsobaeT 9Y3 se pauTIOp mﬁnmu (T)

1€ d1I9VYL ¥0d SHILON
sjusumbaiy Teoy oml
a1qnod Teay aoddada Z Ce + Te JO 3OoNpoxd UOTISTIO|Ad aTqnod
Jusumbay xsTdwo)d
xa1dwo)d xo1dwo)d HPNOD T I~ / Te - xe e jo 9oj3ebnluo) urtelzqo
. wIoF XoTdwo) Ut
xoTdwo)D Teay XTIdWD z -/ e + ‘e sjusunbay [esay oMm] ssaadxy
afqunod 2Tgnog 03
a1qnod I0 Tesay 7190) T Te9d WOIJF UOTSIDAUOD aTgqnog
: Juaumbay xo1dwod
Teay xa1dwo) OVYWIY T TE Jo 3xedq Axeurbewl utelqo
” juswunbay .
Te9d xo1dwo) Tvay T Ie xoTdwo) JO 33xed Tedd UurTelqo
Ioba3ur | a930vIRYD NAT 1 A3T3ug xs3odoeIRUD JO yzbuel
uot3ound Jusunbay sweN sjusunbay uoT3TUTISA _uoT3doungd OTSUTIJUT
3o °dAL orToquds | 3FO_ I9qumN : :

SNOILONANA DISNIVLNI

4

(penuT3luo)) ¢ dIIVL

(2)

- - 9Tqnoqg S1qnoa s0oYda
Td3 x50 - Teay Tesy SOOY 1 (e)sooae DUTS0DIY
- a1qnod aTqnod NISvd
¢/1d sy x3g/1d- Tea4 Tesy NISY 1 (e)utrsoxe QUTSOaY
~ aTqgnog aTqnod ZNYLYd
1d Y'x »1d- 1299 Tesy ZNYIY Z ANM\MVGMPOMm
- s1qnoa . ®Tgqnoa NYIVd _ :
z/tdyx yg/1d- 1esy 129y NYIVY 1 Amvamuoym . jusbueloavy
a1gnog asTgnog NY.Ld
Teay Tesy © NYIL T (e)ueq Jusbue]
xaTdwo) xa1dwo) mouu
STAnog STqnog S02da
ISx351- Tesy ey S0D T (e)sood dUTS0)D
xo1dwod x9T1dwod NISD
aTqnod a1qnodg NIsd
15151~ Tesd Te29- NIS T (e)utrs SUuTsS
°2Tqnog |sTqnod 0TS01a
Te9y Teay 0I90TY¥ T (e)oTbOT Wyl TIRbOT UOUMIOD
xoT1dwo)d xaTdwod 901D
sTqnod atqnoa 501d
Teay Tesy 901V 1 (e)®boT uyatxeborT TeanizeN
xo1dwo) xoTdwo) dxdn
, aTqnod aTanod dxdada
0<=x Teay Tesy axd T Byx® TeT3iusuodxy
J3Insayg uotloung JUsUNMbIY oweN .s3jusunbay uoT3TUTIIOA Hmcymuxm o1sed
Jo obuey Jo adAg o1 TOoquAsg Jo JaqunN

SNOILONNd TYNYEIXH OISVL

b HI9YL

DAL A AERNE.

LStiww .HO

-op sT (%e’Te) gqowa uoT3ouny HutiepuTEWSI SYIL (8) uey3 SsOT o 3ISNW SODVA Pue ‘SOOV ‘NISYA
‘NISY JO 3suumbie 243 JO onfea ajnfosdqe ayl (%)
oxez 03 Tenbe xo ueyz ao3ze8Ib ST
qxed AzeutbhewT 9yl ‘oxez ST 3ied Tes1 9yl USYM *oI19z 03 1enbs 10 ueyz x9jzesab
-019z 03 Tenbe 10 ueys io93esab 3Ied Teex oy3 aq 3Isnw LJOSd pue YOS FO Jusunbae ayyL (g)
yatm entea Tedroutad 9Yyz ST I¥0SD FO ITNSSI YL (L)
, *Td 7z oTnpouw juswunbie 8yl 9sSn SUOTI}
*0x19Z 2 mwcmﬁﬁmum y3loq 3T paurjyopun ST 3Tns -ouny 9s9YL °SURTPRI UT 3 IJIsnu NYILd pue
-21 9yy e 103 eaT3ebou pue o K'e 107 °9ATY NVL ‘S00Q ‘S0D ‘NISd ‘NIS Jo jusumbae ayr ()
-tsod 10 o“mu ST NYIVQ PU®e ZNVIV JO 3Tnsax a3yl (9) _ _
(*0’°0) o9 30U 3Snw HOID JO Fusumbie
‘sueTpeI UT ST ZNVIVA Pu®e ‘ZNVIV ‘NYLVQd 9yL -oxaz ueyi idjeaxb aq 3Isnw (TH0IA
‘NYIY ‘SO0O¥d ‘SOOY ‘NISVA ‘NISVY 3O 3Insex ayr (9) pue ‘QID0TVY ‘D0Id ‘HOTVY Fo 3Fusumbie sy (T)
iy ETdVYL ¥d04 SULON
0o x Tesay xa1dwo) SdVD T 7/ T (Tx+TR+TxxT0) SNINPON
aTgqnod aTqnod aowda r4 ANm oTnpou) Te buTtIopuTRWSY
0 23xed Teoy xo1dwo)d xoTdwo) I90SD
a1qnog aTqnoa Id0sd
0 =z Tesy Tesy L90s T z/1(®) 300y axenbs
~_ . @1qnoda aTqnoa HNY.LQ
T>Ix51- Te9y Teay HNY.L T (e)yuel | jusbuer d>TTOqISdAH
. aTgqnodg 2Tqnod HS0Dd
I<x Te929 Teay HSO0D 1 (e)ysoo autso) oTT1oqxadAH
sTanoa oTqnoa HNISA | . v
Teay Te9y HNIS 1 (e)yuts auTs oTToqaadAH
3Tnsay uoT3oung Jusumbay ETEN s3juswunbavy UuoT3TUTISA Teuxd3xXd o1sed
Jo obuey Jo odA&g _ OTTOoquAs - | FJO IJoqUMN

SNOIIONNA TUYNYILXE DOISVL
(penurt3uo)) ¥ dTdVL

(8)

(9)
(10)

(11)

NOTES FOR TABLE 4 (Continued)

Cont. fined as a a,/a j a, where{;x] is the largest integer
: whose magn}t é does not exceed the magnitude of x and
whose sign is the same as the sign of x.

The principle value is used for results of complex functions.

The argument and result of a function cannot exceed the numerical
range of the processor. In particular, if the value of a function
can mathematically be infinite, the argument must be such that
the result does not exceed the numerical range of the processor.

A complex value is expressed as an ordered pair of reals, (ar,ai),
where ar is the real part and ai is the imaginary part. '

6. CONFIGURATION REQUIRED
A. Any INTERDATA 32 bit processor.
B. 0S/32

C. Source input, source output, a direct access scratch device,
‘ and listing output device.

D. "Memory requirements.

7. CONFIGURATION OPTIONS

8. RELATION TO OTHER PRODUCTS OR PROGRAMS

FORTRAN V LEVEL II is nearly upwards compatible with FORTRAN V
LEVEL I. Hollerith constants, because of the addition of character
strings, are only legal in the argument list of a CALL statement
and in the DATA statement.

The FORTRAN V LEVEL II compiler will generate CAL source code
for 32 bit processors. The code produced is compatible with the
0S/32 resident loader, the 0S/32 MT TET, and the 0S/32 Library
Loader.

9. PERFORMANCE SPECIFICATIONS

'10. PACKAGING

